Exemple #1
0
    def __new__(cls, lhs, rhs=0, **options):
        from sympy.core.add import Add
        from sympy.core.logic import fuzzy_bool
        from sympy.core.expr import _n2
        from sympy.simplify.simplify import clear_coefficients

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false

            # check finiteness
            fin = L, R = [i.is_finite for i in (lhs, rhs)]
            if None not in fin:
                if L != R:
                    return S.false
                if L is False:
                    if lhs == -rhs:  # Eq(oo, -oo)
                        return S.false
                    return S.true
            elif None in fin and False in fin:
                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator infinite does not
                            # make the original expression True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite for a in Add.make_args(n)):  # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)
Exemple #2
0
    def __new__(cls, lhs, rhs=0, **options):
        from sympy.core.add import Add
        from sympy.core.logic import fuzzy_bool
        from sympy.core.expr import _n2
        from sympy.simplify.simplify import clear_coefficients

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true  # e.g. True == True
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false  # True != False
            elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(
                    lhs, Boolean) != isinstance(rhs, Boolean)):
                return S.false  # only Booleans can equal Booleans

            # check finiteness
            fin = L, R = [i.is_finite for i in (lhs, rhs)]
            if None not in fin:
                if L != R:
                    return S.false
                if L is False:
                    if lhs == -rhs:  # Eq(oo, -oo)
                        return S.false
                    return S.true
            elif None in fin and False in fin:
                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator infinite does not
                            # make the original expression True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite
                         for a in Add.make_args(n)):  # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)
Exemple #3
0
    def __new__(cls, lhs, rhs=None, **options):
        from sympy.core.add import Add
        from sympy.core.containers import Tuple
        from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
        from sympy.core.expr import _n2
        from sympy.functions.elementary.complexes import arg
        from sympy.simplify.simplify import clear_coefficients
        from sympy.utilities.iterables import sift

        if rhs is None:
            SymPyDeprecationWarning(feature="Eq(expr) with rhs default to 0",
                                    useinstead="Eq(expr, 0)",
                                    issue=16587,
                                    deprecated_since_version="1.5").warn()
            rhs = 0

        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_parameters.evaluate)

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true  # e.g. True == True
            elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
                return S.false  # True != False
            elif not (lhs.is_Symbol or rhs.is_Symbol) and (isinstance(
                    lhs, Boolean) != isinstance(rhs, Boolean)):
                return S.false  # only Booleans can equal Booleans

            if lhs.is_infinite or rhs.is_infinite:
                if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
                    return S.false
                if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
                    return S.false
                if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
                    r = fuzzy_xor([
                        lhs.is_extended_positive,
                        fuzzy_not(rhs.is_extended_positive)
                    ])
                    return S(r)

                # Try to split real/imaginary parts and equate them
                I = S.ImaginaryUnit

                def split_real_imag(expr):
                    real_imag = lambda t: ('real'
                                           if t.is_extended_real else 'imag' if
                                           (I * t).is_extended_real else None)
                    return sift(Add.make_args(expr), real_imag)

                lhs_ri = split_real_imag(lhs)
                if not lhs_ri[None]:
                    rhs_ri = split_real_imag(rhs)
                    if not rhs_ri[None]:
                        eq_real = Eq(Add(*lhs_ri['real']),
                                     Add(*rhs_ri['real']))
                        eq_imag = Eq(I * Add(*lhs_ri['imag']),
                                     I * Add(*rhs_ri['imag']))
                        res = fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
                        if res is not None:
                            return S(res)

                # Compare e.g. zoo with 1+I*oo by comparing args
                arglhs = arg(lhs)
                argrhs = arg(rhs)
                # Guard against Eq(nan, nan) -> False
                if not (arglhs == S.NaN and argrhs == S.NaN):
                    res = fuzzy_bool(Eq(arglhs, argrhs))
                    if res is not None:
                        return S(res)

                return Relational.__new__(cls, lhs, rhs, **options)

            if all(isinstance(i, Expr) for i in (lhs, rhs)):
                # see if the difference evaluates
                dif = lhs - rhs
                z = dif.is_zero
                if z is not None:
                    if z is False and dif.is_commutative:  # issue 10728
                        return S.false
                    if z:
                        return S.true
                # evaluate numerically if possible
                n2 = _n2(lhs, rhs)
                if n2 is not None:
                    return _sympify(n2 == 0)
                # see if the ratio evaluates
                n, d = dif.as_numer_denom()
                rv = None
                if n.is_zero:
                    rv = d.is_nonzero
                elif n.is_finite:
                    if d.is_infinite:
                        rv = S.true
                    elif n.is_zero is False:
                        rv = d.is_infinite
                        if rv is None:
                            # if the condition that makes the denominator
                            # infinite does not make the original expression
                            # True then False can be returned
                            l, r = clear_coefficients(d, S.Infinity)
                            args = [_.subs(l, r) for _ in (lhs, rhs)]
                            if args != [lhs, rhs]:
                                rv = fuzzy_bool(Eq(*args))
                                if rv is True:
                                    rv = None
                elif any(a.is_infinite for a in Add.make_args(n)):
                    # (inf or nan)/x != 0
                    rv = S.false
                if rv is not None:
                    return _sympify(rv)

        return Relational.__new__(cls, lhs, rhs, **options)