Exemple #1
0
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
        assert octave_code(f(x)) == f.__name__ + '(x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(
        n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
    assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
    assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
    assert octave_code(jn(
        n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(
        n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
    assert octave_code(LambertW(x)) == 'lambertw(x)'
    assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'

    # Automatic rewrite
    assert octave_code(Ei(x)) == 'logint(exp(x))'
    assert octave_code(dirichlet_eta(x)) == '(1 - 2.^(1 - x)).*zeta(x)'
    assert octave_code(
        riemann_xi(x)) == 'pi.^(-x/2).*x.*(x - 1).*gamma(x/2).*zeta(x)/2'
def test_branch_bug():
    assert hyperexpand(hyper((Rational(-1, 3), S.Half), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
                       Rational(2, 3), z)/z**S('2/3'))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
Exemple #3
0
def test_issue_16536():
    if not scipy:
        skip("scipy not installed")

    a = symbols('a')
    f1 = lowergamma(a, x)
    F = lambdify((a, x), f1, modules='scipy')
    assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10

    f2 = uppergamma(a, x)
    F = lambdify((a, x), f2, modules='scipy')
    assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10
Exemple #4
0
def test_GammaProcess_symbolic():
    t, d, x, y, g, l = symbols('t d x y g l', positive=True)
    X = GammaProcess("X", l, g)

    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-1))
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.state_space == Interval(0, oo)
    assert X.distribution(t) == GammaDistribution(g * t, 1 / l)
    assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(
        Lambda(
            (X(5), X(3)),
            l**(8 * g) * exp(-l * X(3)) * exp(-l * X(5)) * X(3)**(3 * g - 1) *
            X(5)**(5 * g - 1) / (gamma(3 * g) * gamma(5 * g))))
    # property of the gamma process at any given timestamp
    assert E(X(t)) == g * t / l
    assert variance(X(t)).simplify() == g * t / l**2

    # Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
    assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
            2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3

    assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
                                1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)

    #test issue 20078
    assert (2 * X(t) + 3 * X(t)).simplify() == 5 * X(t)
    assert (2 * X(t) - 3 * X(t)).simplify() == -X(t)
    assert (2 * (0.25 * X(t))).simplify() == 0.5 * X(t)
    assert (2 * X(t) * 0.25 * X(t)).simplify() == 0.5 * X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1) * X(t)**2
def test_Mod1_behavior():
    from sympy.core.symbol import Symbol
    from sympy.simplify.simplify import simplify
    n = Symbol('n', integer=True)
    # Note: this should not hang.
    assert simplify(hyperexpand(meijerg([1], [], [n + 1], [0], z))) == \
        lowergamma(n + 1, z)
Exemple #6
0
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
        assert octave_code(f(x)) == f.__name__ + '(x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
    assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
    assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
    assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
    assert octave_code(LambertW(x)) == 'lambertw(x)'
    assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
Exemple #7
0
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
        assert octave_code(f(x)) == f.__name__ + '(x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
    assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
    assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
    assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
    assert octave_code(LambertW(x)) == 'lambertw(x)'
    assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_branch_bug():
    from sympy.functions.special.gamma_functions import lowergamma
    from sympy.simplify.powsimp import powdenest
    # TODO gammasimp cannot prove that the factor is unity
    assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x),
                     polar=True) == 2 * erf(x**3) * gamma(Rational(
                         2, 3)) / 3 / gamma(Rational(5, 3))
    assert integrate(erf(x**3), x, meijerg=True) == \
        2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \
        - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3)))
Exemple #9
0
def test_specfun():
    n = Symbol("n")
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + "(n, x)"
    for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
        assert octave_code(f(x)) == f.__name__ + "(x)"
    assert octave_code(hankel1(n, x)) == "besselh(n, 1, x)"
    assert octave_code(hankel2(n, x)) == "besselh(n, 2, x)"
    assert octave_code(airyai(x)) == "airy(0, x)"
    assert octave_code(airyaiprime(x)) == "airy(1, x)"
    assert octave_code(airybi(x)) == "airy(2, x)"
    assert octave_code(airybiprime(x)) == "airy(3, x)"
    assert octave_code(uppergamma(n,
                                  x)) == "(gammainc(x, n, 'upper').*gamma(n))"
    assert octave_code(lowergamma(n, x)) == "(gammainc(x, n).*gamma(n))"
    assert octave_code(z**lowergamma(n, x)) == "z.^(gammainc(x, n).*gamma(n))"
    assert octave_code(jn(
        n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2"
    assert octave_code(yn(
        n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2"
    assert octave_code(LambertW(x)) == "lambertw(x)"
    assert octave_code(LambertW(x, n)) == "lambertw(n, x)"
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(n, x)) == 'gammainc(x, n, \'upper\')'
    assert octave_code(lowergamma(n, x)) == 'gammainc(x, n, \'lower\')'
    assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
Exemple #11
0
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(n, x)) == 'gammainc(x, n, \'upper\')'
    assert octave_code(lowergamma(n, x)) == 'gammainc(x, n, \'lower\')'
    assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
Exemple #12
0
def test_uppergamma():
    from sympy.functions.special.error_functions import expint
    from sympy.functions.special.hyper import meijerg
    assert uppergamma(4, 0) == 6
    assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
    assert td(uppergamma(randcplx(), y), y)
    assert uppergamma(x, y).diff(x) == \
        uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
    assert td(uppergamma(x, randcplx()), x)

    p = Symbol('p', positive=True)
    assert uppergamma(0, p) == -Ei(-p)
    assert uppergamma(p, 0) == gamma(p)
    assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
    assert not uppergamma(S.Half - 3, x).has(uppergamma)
    assert not uppergamma(S.Half + 3, x).has(uppergamma)
    assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
    assert tn(uppergamma(S.Half + 3, x, evaluate=False),
              uppergamma(S.Half + 3, x), x)
    assert tn(uppergamma(S.Half - 3, x, evaluate=False),
              uppergamma(S.Half - 3, x), x)

    assert unchanged(uppergamma, x, -oo)
    assert unchanged(uppergamma, x, 0)

    assert tn_branch(-3, uppergamma)
    assert tn_branch(-4, uppergamma)
    assert tn_branch(Rational(1, 3), uppergamma)
    assert tn_branch(pi, uppergamma)
    assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
    assert uppergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
        gamma(y)*(1 - exp(4*pi*I*y))
    assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
        uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I

    assert uppergamma(-2, x) == expint(3, x)/x**2

    assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
    assert unchanged(conjugate, uppergamma(x, -oo))

    assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
    assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)

    assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
    assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
    assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
Exemple #13
0
def test_issue_16535_16536():
    from sympy.functions.special.gamma_functions import (lowergamma, uppergamma)

    a = symbols('a')
    expr1 = lowergamma(a, x)
    expr2 = uppergamma(a, x)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
    assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'

    prntr = NumPyPrinter()
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)

    prntr = PythonCodePrinter()
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)
def test_hyperexpand_bases():
    assert hyperexpand(hyper([2], [a], z)) == \
        a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \
        lowergamma(a - 1, z) - 1
    # TODO [a+1, aRational(-1, 2)], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
    assert hyperexpand(hyper([S.Half, 2], [Rational(3, 2)], z)) == \
        -1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
    assert hyperexpand(hyper([S.Half, S.Half], [Rational(5, 2)], z)) == \
        (-3*z + 3)/4/(z*sqrt(-z + 1)) \
        + (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2))
    assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \
        - asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
    assert hyperexpand(hyper([Rational(-1, 2) - 1, 1, 2], [S.Half, 3], z)) == \
        sqrt(z)*(z*Rational(6, 7) - Rational(6, 5))*atanh(sqrt(z)) \
        + (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
    assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
        -4*log(sqrt(-z + 1)/2 + S.Half)/z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [S.Half, a], [Rational(3, 2), a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == \
        z**(-b/2 + S.Half)*besseli(b - 1, 2*sqrt(z))*gamma(b) \
        + z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
Exemple #15
0
 def _eval_rewrite_as_gamma(self, arg, piecewise=True, **kwargs):
     from sympy.functions.elementary.exponential import exp
     from sympy.functions.special.gamma_functions import (gamma, lowergamma)
     return (S.NegativeOne**(arg + 1) * exp(-I * pi * arg) *
             lowergamma(arg + 1, -1) + gamma(arg + 1)) * exp(-1)
Exemple #16
0
def test_meijerint():
    from sympy.core.function import expand
    from sympy.core.symbol import symbols
    from sympy.functions.elementary.complexes import arg
    s, t, mu = symbols('s t mu', real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) *
        meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4),
        (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(
        integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                  meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    assert meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(
        exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo,
        oo) == (1, True)
    assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S.Half, True)

    # Test a bug
    def res(n):
        return (1 / (1 + x**2)).diff(x, n).subs(x, 1) * (-1)**n

    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo),
                              meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    from sympy.functions.elementary.complexes import re
    assert meijerint_definite(
        meijerg([], [], [a / 2], [-a / 2], x / 4) *
        meijerg([], [], [b / 2], [-b / 2], x / 4) * x**(s - 1), x, 0,
        oo) == ((4 * 2**(2 * s - 2) * gamma(-2 * s + 1) *
                 gamma(a / 2 + b / 2 + s) /
                 (gamma(-a / 2 + b / 2 - s + 1) *
                  gamma(a / 2 - b / 2 - s + 1) * gamma(a / 2 + b / 2 - s + 1)),
                 (re(s) < 1) & (re(s) < S(1) / 2) &
                 (re(a) / 2 + re(b) / 2 + re(s) > 0)))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, S.Half)/4).expand()

    # Test hyperexpand bug.
    from sympy.functions.special.gamma_functions import lowergamma
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half,
        alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2
Exemple #17
0
def test_lowergamma():
    from sympy.functions.special.error_functions import expint
    from sympy.functions.special.hyper import meijerg
    assert lowergamma(x, 0) == 0
    assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == \
        gamma(x)*digamma(x) - uppergamma(x, y)*log(y) \
        - meijerg([], [1, 1], [0, 0, x], [], y)

    assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
    assert not lowergamma(S.Half - 3, x).has(lowergamma)
    assert not lowergamma(S.Half + 3, x).has(lowergamma)
    assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(S.Half + 3, x, evaluate=False),
              lowergamma(S.Half + 3, x), x)
    assert tn(lowergamma(S.Half - 3, x, evaluate=False),
              lowergamma(S.Half - 3, x), x)

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
    assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
        lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
    assert conjugate(lowergamma(x, 0)) == 0
    assert unchanged(conjugate, lowergamma(x, -oo))

    assert lowergamma(0, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1, x, evaluate=False)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x + 1, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1/x, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(0, x + 1)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(1, x + 1, evaluate=False)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x + 1, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(1/x, x + 1)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(0, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1, 1/x, evaluate=False)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x + 1, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1/x, 1/x)._eval_is_meromorphic(x, 0) == False

    assert lowergamma(x, 2).series(x, oo, 3) == \
        2**x*(1 + 2/(x + 1))*exp(-2)/x + O(exp(x*log(2))/x**3, (x, oo))

    assert lowergamma(
        x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
    k = Symbol('k', integer=True)
    assert lowergamma(
        k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
    k = Symbol('k', integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)

    assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
    assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
    assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_issue_12173():
    #test for issue 12173
    exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
    exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
    assert exp1 == uppergamma(1, 2).evalf()
    assert exp2 == lowergamma(1, 2).evalf()
Exemple #19
0
def test_sympy__functions__special__gamma_functions__lowergamma():
    from sympy.functions.special.gamma_functions import lowergamma
    assert _test_args(lowergamma(x, 2))
Exemple #20
0
def chi_square_cdf(x, k):
    from sympy.functions.special.gamma_functions import lowergamma

    return lowergamma(k / 2, x / 2) / gamma(k / 2)
Exemple #21
0
def test_issue_14450():
    assert uppergamma(Rational(3, 8), x).evalf() == uppergamma(Rational(3, 8), x)
    assert lowergamma(x, Rational(3, 8)).evalf() == lowergamma(x, Rational(3, 8))
    # some values from Wolfram Alpha for comparison
    assert abs(uppergamma(Rational(3, 8), 2).evalf() - 0.07105675881) < 1e-9
    assert abs(lowergamma(Rational(3, 8), 2).evalf() - 2.2993794256) < 1e-9
Exemple #22
0
def test_issue_12173():
    #test for issue 12173
    exp1 = lambdify((x, y), uppergamma(x, y), "mpmath")(1, 2)
    exp2 = lambdify((x, y), lowergamma(x, y), "mpmath")(1, 2)
    assert exp1 == uppergamma(1, 2).evalf()
    assert exp2 == lowergamma(1, 2).evalf()
Exemple #23
0
def test_sympy__functions__special__gamma_functions__lowergamma():
    from sympy.functions.special.gamma_functions import lowergamma
    assert _test_args(lowergamma(x, 2))