def npartitions(n, verbose=False): """ Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers. P(n) is computed using the Hardy-Ramanujan-Rademacher formula, described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html The correctness of this implementation has been tested for 10**n up to n = 8. """ n = int(n) if n < 0: return 0 if n <= 5: return [1, 1, 2, 3, 5, 7][n] # Estimate number of bits in p(n). This formula could be tidied pbits = int((math.pi*(2*n/3.)**0.5-math.log(4*n))/math.log(10)+1)*\ math.log(10,2) prec = p = int(pbits*1.1 + 100) s = fzero M = max(6, int(0.24*n**0.5+4)) sq23pi = mpf_mul(mpf_sqrt(from_rational(2,3,p), p), mpf_pi(p), p) sqrt8 = mpf_sqrt(from_int(8), p) for q in xrange(1, M): a = A(n,q,p) d = D(n,q,p, sq23pi, sqrt8) s = mpf_add(s, mpf_mul(a, d), prec) if verbose: print "step", q, "of", M, to_str(a, 10), to_str(d, 10) # On average, the terms decrease rapidly in magnitude. Dynamically # reducing the precision greatly improves performance. p = bitcount(abs(to_int(d))) + 50 np = to_int(mpf_add(s, fhalf, prec)) return int(np)
def D(n, j, prec, sq23pi, sqrt8): """ Compute the sinh term in the outer sum of the HRR formula. The constants sqrt(2/3*pi) and sqrt(8) must be precomputed. """ j = from_int(j) pi = mpf_pi(prec) a = mpf_div(sq23pi, j, prec) b = mpf_sub(from_int(n), from_rational(1,24,prec), prec) c = mpf_sqrt(b, prec) ch, sh = cosh_sinh(mpf_mul(a,c), prec) D = mpf_div(mpf_sqrt(j,prec), mpf_mul(mpf_mul(sqrt8,b),pi), prec) E = mpf_sub(mpf_mul(a,ch), mpf_div(sh,c,prec), prec) return mpf_mul(D, E)
def _create_evalf_table(): global evalf_table evalf_table = { C.Symbol : evalf_symbol, C.Dummy : evalf_symbol, C.Real : lambda x, prec, options: (x._mpf_, None, prec, None), C.Rational : lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None), C.Integer : lambda x, prec, options: (from_int(x.p, prec), None, prec, None), C.Zero : lambda x, prec, options: (None, None, prec, None), C.One : lambda x, prec, options: (fone, None, prec, None), C.Half : lambda x, prec, options: (fhalf, None, prec, None), C.Pi : lambda x, prec, options: (mpf_pi(prec), None, prec, None), C.Exp1 : lambda x, prec, options: (mpf_e(prec), None, prec, None), C.ImaginaryUnit : lambda x, prec, options: (None, fone, None, prec), C.NegativeOne : lambda x, prec, options: (fnone, None, prec, None), C.exp : lambda x, prec, options: evalf_pow(C.Pow(S.Exp1, x.args[0], evaluate=False), prec, options), C.cos : evalf_trig, C.sin : evalf_trig, C.Add : evalf_add, C.Mul : evalf_mul, C.Pow : evalf_pow, C.log : evalf_log, C.atan : evalf_atan, C.abs : evalf_abs, C.re : evalf_re, C.im : evalf_im, C.floor : evalf_floor, C.ceiling : evalf_ceiling, C.Integral : evalf_integral, C.Sum : evalf_sum, C.Piecewise : evalf_piecewise, C.bernoulli : evalf_bernoulli, }
def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))