Exemple #1
0
def test_prps():
    oddcomposites = [n for n in range(1, 10**5) if
        n % 2 and not isprime(n)]
    # A checksum would be better.
    assert sum(oddcomposites) == 2045603465
    assert [n for n in oddcomposites if mr(n, [2])] == [
        2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
        52633, 65281, 74665, 80581, 85489, 88357, 90751]
    assert [n for n in oddcomposites if mr(n, [3])] == [
        121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
        18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
        74593, 79003, 82513, 87913, 88573, 97567]
    assert [n for n in oddcomposites if mr(n, [325])] == [
        9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
        2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
        12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
        24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
        55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
        76793, 78409, 85879]
    assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
    assert [n for n in oddcomposites if is_lucas_prp(n)] == [
        323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
        11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
        19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
        32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
        46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
        63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
        82983, 84419, 86063, 90287, 94667, 97019, 97439]
    assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
        5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
        58519, 75077, 97439]
    assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
            ] == [
        989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
        72389, 73919, 75077]
Exemple #2
0
def test_prps():
    oddcomposites = [n for n in range(1, 10**5) if
        n % 2 and not isprime(n)]
    # A checksum would be better.
    assert sum(oddcomposites) == 2045603465
    assert [n for n in oddcomposites if mr(n, [2])] == [
        2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
        52633, 65281, 74665, 80581, 85489, 88357, 90751]
    assert [n for n in oddcomposites if mr(n, [3])] == [
        121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
        18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
        74593, 79003, 82513, 87913, 88573, 97567]
    assert [n for n in oddcomposites if mr(n, [325])] == [
        9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
        2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
        12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
        24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
        55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
        76793, 78409, 85879]
    assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
    assert [n for n in oddcomposites if is_lucas_prp(n)] == [
        323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
        11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
        19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
        32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
        46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
        63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
        82983, 84419, 86063, 90287, 94667, 97019, 97439]
    assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
        5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
        58519, 75077, 97439]
    assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
            ] == [
        989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
        72389, 73919, 75077]
Exemple #3
0
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(sieve.primerange(10, 1)) == []
    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
Exemple #4
0
def test_generate():
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
def SchnorrGenerationKey():
    # Генерируем простое число из диапазона
    q = randprime(2 ** 139, 2 ** 140)
    # Генерируем целое число
    rand = random.randint(2 ** 371, 2 ** 372)
    # Произведение
    testP = q * rand
    # Пока testP+1 не станет простым, генерируем заново и считаем произведение
    # в итоге получим, что простое q - делитель p - 1, а p - простое
    while(mr(testP + 1, [31, 72]) == False):
        q = randprime(2 ** 139, 2 ** 140)
        rand = random.randint(2 ** 371, 2 ** 372)
        testP = q * rand   
    p = testP + 1
    # Ищем g, мультипликативный порядок по модулю p которого равен q (g^q = (1 mod p))
    h = random.randint(1, p - 1)
    g = pow (h, (p - 1) // q, p)
    while(g == 1):
        h = random.randint(1, p - 1)
        g = pow (h, (p - 1) // q, p)
    # Вычисляем параметры w и y
    w = random.randint(0, q - 1)
    y = pow(bezout(g, p), w, p)
    return jsonify({"p": str(p), "q": str(q), "g": str(g), "y": str(y), "w": str(w)})
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))