def divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6
def test_divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(17) == [1, 17] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6 assert divisor_count(180, 3) == divisor_count(180//3) assert divisor_count(2*3*5, 7) == 0
def test_divisor_count(): assert divisor_count(0) == 0 assert divisor_count(6) == 4
check = True bases = [] for i in range(2, 11): base = int(enclosed_num, i) bases.append(base) if isprime(base): check = False break #print(len(bases)) if check == True: print(enclosed_num, end="") output.write(enclosed_num) for base in bases: if divisor_count(base) == 2: print("dafuq") print(' ', end="") print(primefactors(base)[0], end="") output.write(" ") output.write(str(primefactors(base)[0])) print() for base in bases: print('{} -> {}'.format(base, primefactors(base))) output.write("\n") counter += 1 #if cur_num % 10 == 0: # print(cur_num) cur_num += 1
def unrelated(n): """The amount of numbers less than n that are neither coprime to nor divisors of n.""" return n - nthry.totient(n) - nthry.divisor_count(n) + 1