def test_quantum_fourier(): assert QFT(0,3).decompose() == SwapGate(0,2)*HadamardGate(0)*CGate((0,), PhaseGate(1))\ *HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2))*HadamardGate(2) assert IQFT(0,3).decompose() == HadamardGate(2)*CGate((1,), RkGate(2,-2))*CGate((0,),RkGate(2,-3))\ *HadamardGate(1)*CGate((0,), RkGate(1,-2))*HadamardGate(0)*SwapGate(0,2) assert represent(QFT(0,3), nqubits=3)\ == Matrix([[exp(2*pi*I/8)**(i*j%8)/sqrt(8) for i in range(8)] for j in range(8)]) assert QFT(0, 4).decompose() #non-trivial decomposition assert qapply(QFT(0,3).decompose()*Qubit(0,0,0)).expand() ==\ qapply(HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0,0,0)).expand()
def period_find(a, N): """Finds the period of a in modulo N arithmetic This is quantum part of Shor's algorithm.It takes two registers, puts first in superposition of states with Hadamards so: |k>|0> with k being all possible choices. It then does a controlled mod and a QFT to determine the order of a. """ epsilon = .5 #picks out t's such that maintains accuracy within epsilon t = int(2 * math.ceil(log(N, 2))) # make the first half of register be 0's |000...000> start = [0 for x in range(t)] #Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0> factor = 1 / sqrt(2**t) qubits = 0 for i in range(2**t): qbitArray = arr(i, t) + start qubits = qubits + Qubit(*qbitArray) circuit = (factor * qubits).expand() #Controlled second half of register so that we have: # |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n> circuit = CMod(t, a, N) * circuit #will measure first half of register giving one of the a**k%N's circuit = apply_operators(circuit) print "controlled Mod'd" for i in range(t): circuit = measure_partial_oneshot(circuit, i) # circuit = measure(i)*circuit # circuit = apply_operators(circuit) print "measured 1" #Now apply Inverse Quantum Fourier Transform on the second half of the register circuit = apply_operators(QFT(t, t * 2).decompose() * circuit, floatingPoint=True) print "QFT'd" for i in range(t): circuit = measure_partial_oneshot(circuit, i + t) # circuit = measure(i+t)*circuit # circuit = apply_operators(circuit) print circuit if isinstance(circuit, Qubit): register = circuit elif isinstance(circuit, Mul): register = circuit.args[-1] else: register = circuit.args[-1].args[-1] print register n = 1 answer = 0 for i in range(len(register) / 2): answer += n * register[i + t] n = n << 1 if answer == 0: raise OrderFindingException( "Order finder returned 0. Happens with chance %f" % epsilon) #turn answer into r using continued fractions g = getr(answer, 2**t, N) print g return g
def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1))
def test_qft_represent(): c = QFT(0,3) a = represent(c,nqubits=3) b = represent(c.decompose(),nqubits=3) assert a.evalf(prec=10) == b.evalf(prec=10)
def test_qft_represent(): c = QFT(0, 3) a = represent(c, nqubits=3) b = represent(c.decompose(), nqubits=3) assert a.evalf(n=10) == b.evalf(n=10)