def dup_compose(f, g, K): """ Evaluate functional composition ``f(g)`` in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_compose(x**2 + x, x - 1) x**2 - x """ if len(g) <= 1: return dup_strip([dup_eval(f, dup_LC(g, K), K)]) if not f: return [] h = [f[0]] for c in f[1:]: h = dup_mul(h, g, K) h = dup_add_term(h, c, 0, K) return h
def dup_compose(f, g, K): """ Evaluate functional composition ``f(g)`` in ``K[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densetools import dup_compose >>> f = ZZ.map([1, 1, 0]) >>> g = ZZ.map([1, -1]) >>> dup_compose(f, g, ZZ) [1, -1, 0] """ if len(g) <= 1: return dup_strip([dup_eval(f, dup_LC(g, K), K)]) if not f: return [] h = [f[0]] for c in f[1:]: h = dup_mul(h, g, K) h = dup_add_term(h, c, 0, K) return h
def test_dmp_add_term(): assert dmp_add_term([ZZ(1),ZZ(1),ZZ(1)], ZZ(1), 2, 0, ZZ) == \ dup_add_term([ZZ(1),ZZ(1),ZZ(1)], ZZ(1), 2, ZZ) assert dmp_add_term(f_0, [[]], 3, 2, ZZ) == f_0 assert dmp_add_term(F_0, [[]], 3, 2, QQ) == F_0
def test_dup_add_term(): f = dup_normal([], ZZ) assert dup_add_term(f, ZZ(0), 0, ZZ) == dup_normal([], ZZ) assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1], ZZ) assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 0], ZZ) assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([1, 0, 0], ZZ) f = dup_normal([1,1,1], ZZ) assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1, 1, 2], ZZ) assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 2, 1], ZZ) assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([2, 1, 1], ZZ) assert dup_add_term(f, ZZ(1), 3, ZZ) == dup_normal([1, 1, 1, 1], ZZ) assert dup_add_term(f, ZZ(1), 4, ZZ) == dup_normal([1, 0, 1, 1, 1], ZZ) assert dup_add_term(f, ZZ(1), 5, ZZ) == dup_normal([1, 0, 0, 1, 1, 1], ZZ) assert dup_add_term(f, ZZ(1), 6, ZZ) == dup_normal([1, 0, 0, 0, 1, 1, 1], ZZ) assert dup_add_term(f,ZZ(-1), 2, ZZ) == dup_normal([1, 1], ZZ)