Exemple #1
0
def dmp_inner_gcd(f, g, u, K):
    """
    Computes polynomial GCD and cofactors of ``f`` and ``g`` in ``K[X]``.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_inner_gcd

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> g = ZZ.map([[1], [1, 0], []])

    >>> dmp_inner_gcd(f, g, 1, ZZ)
    ([[1], [1, 0]], [[1], [1, 0]], [[1], []])

    """
    if not u:
        return dup_inner_gcd(f, g, K)

    J, (f, g) = dmp_multi_deflate((f, g), u, K)
    h, cff, cfg = _dmp_inner_gcd(f, g, u, K)

    return (dmp_inflate(h, J, u, K),
            dmp_inflate(cff, J, u, K),
            dmp_inflate(cfg, J, u, K))
Exemple #2
0
def dmp_inner_gcd(f, g, u, K):
    """
    Computes polynomial GCD and cofactors of `f` and `g` in `K[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_inner_gcd(f, g)
    (x + y, x + y, x)

    """
    if not u:
        return dup_inner_gcd(f, g, K)

    J, (f, g) = dmp_multi_deflate((f, g), u, K)
    h, cff, cfg = _dmp_inner_gcd(f, g, u, K)

    return (dmp_inflate(h, J, u, K),
            dmp_inflate(cff, J, u, K),
            dmp_inflate(cfg, J, u, K))
Exemple #3
0
def dmp_inner_gcd(f, g, u, K):
    """
    Computes polynomial GCD and cofactors of `f` and `g` in `K[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_inner_gcd(f, g)
    (x + y, x + y, x)

    """
    if not u:
        return dup_inner_gcd(f, g, K)

    J, (f, g) = dmp_multi_deflate((f, g), u, K)
    h, cff, cfg = _dmp_inner_gcd(f, g, u, K)

    return (dmp_inflate(h, J, u, K),
            dmp_inflate(cff, J, u, K),
            dmp_inflate(cfg, J, u, K))
Exemple #4
0
def dmp_inner_gcd(f, g, u, K):
    """
    Computes polynomial GCD and cofactors of `f` and `g` in `K[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_inner_gcd

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> g = ZZ.map([[1], [1, 0], []])

    >>> dmp_inner_gcd(f, g, 1, ZZ)
    ([[1], [1, 0]], [[1], [1, 0]], [[1], []])

    """
    if not u:
        return dup_inner_gcd(f, g, K)

    J, (f, g) = dmp_multi_deflate((f, g), u, K)
    h, cff, cfg = _dmp_inner_gcd(f, g, u, K)

    return (dmp_inflate(h, J, u, K), dmp_inflate(cff, J, u,
                                                 K), dmp_inflate(cfg, J, u, K))
Exemple #5
0
def test_dmp_multi_deflate():
    assert dmp_multi_deflate(([[]],), 1, ZZ) == \
        ((1, 1), ([[]],))
    assert dmp_multi_deflate(([[]], [[]]), 1, ZZ) == \
        ((1, 1), ([[]], [[]]))

    assert dmp_multi_deflate(([[1]], [[]]), 1, ZZ) == \
        ((1, 1), ([[1]], [[]]))
    assert dmp_multi_deflate(([[1]], [[2]]), 1, ZZ) == \
        ((1, 1), ([[1]], [[2]]))
    assert dmp_multi_deflate(([[1]], [[2,0]]), 1, ZZ) == \
        ((1, 1), ([[1]], [[2, 0]]))

    assert dmp_multi_deflate(([[2,0]], [[2,0]]), 1, ZZ) == \
        ((1, 1), ([[2, 0]], [[2, 0]]))

    assert dmp_multi_deflate(([[2]], [[2,0,0]]), 1, ZZ) == ((1, 2), ([[2]], [[2, 0]]))
    assert dmp_multi_deflate(([[2,0,0]], [[2,0,0]]), 1, ZZ) == ((1, 2), ([[2, 0]], [[2, 0]]))

    assert dmp_multi_deflate(([2,0,0], [1,0,4,0,1]), 0, ZZ) == \
        ((2,), ([2, 0], [1, 4, 1]))

    f = [[1, 0, 0], [], [1, 0], [], [1]]
    g = [[1, 0, 1, 0], [], [1]]

    assert dmp_multi_deflate((f,), 1, ZZ) == \
        ((2, 1), ([[1, 0, 0], [1, 0], [1]],))

    assert dmp_multi_deflate((f, g), 1, ZZ) == \
        ((2, 1), ([[1, 0, 0], [1, 0], [1]],
                  [[1, 0, 1, 0], [1]]))