Exemple #1
0
def test_dmp_ground_monic():
    assert dmp_ground_monic([[3], [6], [9]], 1, ZZ) == [[1], [2], [3]]

    raises(ExactQuotientFailed, "dmp_ground_monic([[3],[4],[5]], 1, ZZ)")

    assert dmp_ground_monic([[]], 1, QQ) == [[]]
    assert dmp_ground_monic([[QQ(1)]], 1, QQ) == [[QQ(1)]]
    assert dmp_ground_monic([[QQ(7)], [QQ(1)], [QQ(21)]], 1, QQ) == [[QQ(1)], [QQ(1, 7)], [QQ(3)]]
def test_dmp_ground_monic():
    assert dmp_ground_monic([[3], [6], [9]], 1, ZZ) == [[1], [2], [3]]

    raises(ExactQuotientFailed,
           lambda: dmp_ground_monic([[3], [4], [5]], 1, ZZ))

    assert dmp_ground_monic([[]], 1, QQ) == [[]]
    assert dmp_ground_monic([[QQ(1)]], 1, QQ) == [[QQ(1)]]
    assert dmp_ground_monic([[QQ(7)], [QQ(1)], [QQ(21)]], 1,
                            QQ) == [[QQ(1)], [QQ(1, 7)], [QQ(3)]]
Exemple #3
0
def _dmp_ff_trivial_gcd(f, g, u, K):
    """Handle trivial cases in GCD algorithm over a field. """
    zero_f = dmp_zero_p(f, u)
    zero_g = dmp_zero_p(g, u)

    if zero_f and zero_g:
        return tuple(dmp_zeros(3, u, K))
    elif zero_f:
        return (dmp_ground_monic(g, u, K), dmp_zero(u), dmp_ground(dmp_ground_LC(g, u, K), u))
    elif zero_g:
        return (dmp_ground_monic(f, u, K), dmp_ground(dmp_ground_LC(f, u, K), u), dmp_zero(u))
    elif query("USE_SIMPLIFY_GCD"):
        return _dmp_simplify_gcd(f, g, u, K)
    else:
        return None
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
    x**2 + x*y

    """
    if not u:
        return dup_sqf_part(f, K)

    if K.is_FiniteField:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.is_Field:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Exemple #5
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_part

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0], []])

    >>> dmp_sqf_part(f, 1, ZZ)
    [[1], [1, 0], []]

    """
    if not u:
        return dup_sqf_part(f, K)

    if not K.has_CharacteristicZero:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field or not K.is_Exact:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
def dmp_ext_factor(f, u, K):
    """Factor multivariate polynomials over algebraic number fields. """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all([ d <= 0 for d in dmp_degree_list(f, u) ]):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        coeff, factors = lc, [f]
    else:
        H = dmp_raise([K.one, s*K.unit], u, 0, K)

        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            h = dmp_compose(h, H, u, K)
            factors[i] = h

    return lc, dmp_trial_division(F, factors, u, K)
Exemple #7
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_part

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0], []])

    >>> dmp_sqf_part(f, 1, ZZ)
    [[1], [1, 0], []]

    """
    if not u:
        return dup_sqf_part(f, K)

    if not K.has_CharacteristicZero:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field or not K.is_Exact:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Exemple #8
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
    x**2 + x*y

    """
    if not u:
        return dup_sqf_part(f, K)

    if K.is_FiniteField:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Exemple #9
0
def dmp_ext_factor(f, u, K):
    """Factor multivariate polynomials over algebraic number fields. """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all(d <= 0 for d in dmp_degree_list(f, u)):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        coeff, factors = lc, [f]
    else:
        H = dmp_raise([K.one, s * K.unit], u, 0, K)

        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            h = dmp_compose(h, H, u, K)
            factors[i] = h

    return lc, dmp_trial_division(F, factors, u, K)
Exemple #10
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_list

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0], [], [], []])

    >>> dmp_sqf_list(f, 1, ZZ)
    (1, [([[1], [1, 0]], 2), ([[1], []], 3)])

    >>> dmp_sqf_list(f, 1, ZZ, all=True)
    (1, [([[1]], 1), ([[1], [1, 0]], 2), ([[1], []], 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if not K.has_CharacteristicZero:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field or not K.is_Exact:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Exemple #11
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_list

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0], [], [], []])

    >>> dmp_sqf_list(f, 1, ZZ)
    (1, [([[1], [1, 0]], 2), ([[1], []], 3)])

    >>> dmp_sqf_list(f, 1, ZZ, all=True)
    (1, [([[1]], 1), ([[1], [1, 0]], 2), ([[1], []], 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if not K.has_CharacteristicZero:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field or not K.is_Exact:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
def _dmp_ff_trivial_gcd(f, g, u, K):
    """Handle trivial cases in GCD algorithm over a field. """
    zero_f = dmp_zero_p(f, u)
    zero_g = dmp_zero_p(g, u)

    if zero_f and zero_g:
        return tuple(dmp_zeros(3, u, K))
    elif zero_f:
        return (dmp_ground_monic(g, u, K), dmp_zero(u),
                dmp_ground(dmp_ground_LC(g, u, K), u))
    elif zero_g:
        return (dmp_ground_monic(f, u, K), dmp_ground(dmp_ground_LC(f, u, K),
                                                      u), dmp_zero(u))
    elif query('USE_SIMPLIFY_GCD'):
        return _dmp_simplify_gcd(f, g, u, K)
    else:
        return None
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x**5 + 2*x**4*y + x**3*y**2

    >>> R.dmp_sqf_list(f)
    (1, [(x + y, 2), (x, 3)])
    >>> R.dmp_sqf_list(f, all=True)
    (1, [(1, 1), (x + y, 2), (x, 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if K.is_FiniteField:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.is_Field:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Exemple #14
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x**5 + 2*x**4*y + x**3*y**2

    >>> R.dmp_sqf_list(f)
    (1, [(x + y, 2), (x, 3)])
    >>> R.dmp_sqf_list(f, all=True)
    (1, [(1, 1), (x + y, 2), (x, 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if K.is_FiniteField:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Exemple #15
0
def dmp_qq_heu_gcd(f, g, u, K0):
    """
    Heuristic polynomial GCD in `Q[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_qq_heu_gcd

    >>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
    >>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]

    >>> dmp_qq_heu_gcd(f, g, 1, QQ)
    ([[1/1], [2/1, 0/1]], [[1/4], [1/2, 0/1]], [[1/2], []])

    """
    result = _dmp_ff_trivial_gcd(f, g, u, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)

    h = dmp_convert(h, u, K1, K0)

    c = dmp_ground_LC(h, u, K0)
    h = dmp_ground_monic(h, u, K0)

    cff = dmp_convert(cff, u, K1, K0)
    cfg = dmp_convert(cfg, u, K1, K0)

    cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
    cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)

    return h, cff, cfg
Exemple #16
0
def dmp_qq_heu_gcd(f, g, u, K0):
    """
    Heuristic polynomial GCD in `Q[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,4)*x**2 + x*y + y**2
    >>> g = QQ(1,2)*x**2 + x*y

    >>> R.dmp_qq_heu_gcd(f, g)
    (x + 2*y, 1/4*x + 1/2*y, 1/2*x)

    """
    result = _dmp_ff_trivial_gcd(f, g, u, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)

    h = dmp_convert(h, u, K1, K0)

    c = dmp_ground_LC(h, u, K0)
    h = dmp_ground_monic(h, u, K0)

    cff = dmp_convert(cff, u, K1, K0)
    cfg = dmp_convert(cfg, u, K1, K0)

    cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
    cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)

    return h, cff, cfg
Exemple #17
0
def dmp_qq_heu_gcd(f, g, u, K0):
    """
    Heuristic polynomial GCD in `Q[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_qq_heu_gcd

    >>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
    >>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]

    >>> dmp_qq_heu_gcd(f, g, 1, QQ)
    ([[1/1], [2/1, 0/1]], [[1/4], [1/2, 0/1]], [[1/2], []])

    """
    result = _dmp_ff_trivial_gcd(f, g, u, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)

    h = dmp_convert(h, u, K1, K0)

    c = dmp_ground_LC(h, u, K0)
    h = dmp_ground_monic(h, u, K0)

    cff = dmp_convert(cff, u, K1, K0)
    cfg = dmp_convert(cfg, u, K1, K0)

    cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
    cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)

    return h, cff, cfg
Exemple #18
0
def dmp_qq_heu_gcd(f, g, u, K0):
    """
    Heuristic polynomial GCD in `Q[X]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,4)*x**2 + x*y + y**2
    >>> g = QQ(1,2)*x**2 + x*y

    >>> R.dmp_qq_heu_gcd(f, g)
    (x + 2*y, 1/4*x + 1/2*y, 1/2*x)

    """
    result = _dmp_ff_trivial_gcd(f, g, u, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)

    h = dmp_convert(h, u, K1, K0)

    c = dmp_ground_LC(h, u, K0)
    h = dmp_ground_monic(h, u, K0)

    cff = dmp_convert(cff, u, K1, K0)
    cfg = dmp_convert(cfg, u, K1, K0)

    cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
    cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)

    return h, cff, cfg
Exemple #19
0
def dmp_ff_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a field in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_ff_lcm

    >>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
    >>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]

    >>> dmp_ff_lcm(f, g, 1, QQ)
    [[1/1], [4/1, 0/1], [4/1, 0/1, 0/1], []]

    """
    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_ground_monic(h, u, K)
Exemple #20
0
def dmp_ff_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_ff_prs_gcd

    >>> f = [[QQ(1,2)], [QQ(1), QQ(0)], [QQ(1,2), QQ(0), QQ(0)]]
    >>> g = [[QQ(1)], [QQ(1), QQ(0)], []]

    >>> dmp_ff_prs_gcd(f, g, 1, QQ)
    ([[1/1], [1/1, 0/1]], [[1/2], [1/2, 0/1]], [[1/1], []])

    """
    if not u:
        return dup_ff_prs_gcd(f, g, K)

    result = _dmp_ff_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_ff_prs_gcd(fc, gc, u - 1, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)
    h = dmp_ground_monic(h, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Exemple #21
0
def dmp_ff_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_ff_prs_gcd

    >>> f = [[QQ(1,2)], [QQ(1), QQ(0)], [QQ(1,2), QQ(0), QQ(0)]]
    >>> g = [[QQ(1)], [QQ(1), QQ(0)], []]

    >>> dmp_ff_prs_gcd(f, g, 1, QQ)
    ([[1/1], [1/1, 0/1]], [[1/2], [1/2, 0/1]], [[1/1], []])

    """
    if not u:
        return dup_ff_prs_gcd(f, g, K)

    result = _dmp_ff_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_ff_prs_gcd(fc, gc, u-1, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)
    h = dmp_ground_monic(h, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Exemple #22
0
def dmp_ff_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,2)*x**2 + x*y + QQ(1,2)*y**2
    >>> g = x**2 + x*y

    >>> R.dmp_ff_prs_gcd(f, g)
    (x + y, 1/2*x + 1/2*y, x)

    """
    if not u:
        return dup_ff_prs_gcd(f, g, K)

    result = _dmp_ff_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_ff_prs_gcd(fc, gc, u - 1, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)
    h = dmp_ground_monic(h, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Exemple #23
0
def dmp_ff_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,2)*x**2 + x*y + QQ(1,2)*y**2
    >>> g = x**2 + x*y

    >>> R.dmp_ff_prs_gcd(f, g)
    (x + y, 1/2*x + 1/2*y, x)

    """
    if not u:
        return dup_ff_prs_gcd(f, g, K)

    result = _dmp_ff_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_ff_prs_gcd(fc, gc, u - 1, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)
    h = dmp_ground_monic(h, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Exemple #24
0
def dmp_ff_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a field in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,4)*x**2 + x*y + y**2
    >>> g = QQ(1,2)*x**2 + x*y

    >>> R.dmp_ff_lcm(f, g)
    x**3 + 4*x**2*y + 4*x*y**2

    """
    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_ground_monic(h, u, K)
def dmp_ff_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a field in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,4)*x**2 + x*y + y**2
    >>> g = QQ(1,2)*x**2 + x*y

    >>> R.dmp_ff_lcm(f, g)
    x**3 + 4*x**2*y + 4*x*y**2

    """
    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_ground_monic(h, u, K)
Exemple #26
0
def dmp_ff_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a field in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_ff_lcm

    >>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]]
    >>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []]

    >>> dmp_ff_lcm(f, g, 1, QQ)
    [[1/1], [4/1, 0/1], [4/1, 0/1, 0/1], []]

    """
    h = dmp_exquo(dmp_mul(f, g, u, K),
                  dmp_gcd(f, g, u, K), u, K)

    return dmp_ground_monic(h, u, K)
Exemple #27
0
 def monic(f):
     """Divides all coefficients by `LC(f)`. """
     return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))
Exemple #28
0
 def monic(f):
     """Divides all coefficients by `LC(f)`. """
     return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))