def dmp_ext_factor(f, u, K): """Factor polynomials over algebraic number fields. """ if not u: return dup_ext_factor(f, K) lc = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) if all([d <= 0 for d in dmp_degree_list(f, u)]): return lc, [] f, F = dmp_sqf_part(f, u, K), f s, g, r = dmp_sqf_norm(f, u, K) factors = dmp_factor_list(r, u, K.dom, include=True) if len(factors) == 1: coeff, factors = lc, [f] else: H = dmp_raise([K.one, s * K.unit], u, 0, K) for i, (factor, _) in enumerate(factors): h = dmp_convert(factor, u, K.dom, K) h, _, g = dmp_inner_gcd(h, g, u, K) h = dmp_compose(h, H, u, K) factors[i] = h return lc, dmp_trial_division(F, factors, u, K)
def dmp_ext_factor(f, u, K): """Factor polynomials over algebraic number fields. """ if not u: return dup_ext_factor(f, K) lc = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) if all([ d <= 0 for d in dmp_degree_list(f, u) ]): return lc, [] f, F = dmp_sqf_part(f, u, K), f s, g, r = dmp_sqf_norm(f, u, K) factors = dmp_factor_list(r, u, K.dom, include=True) if len(factors) == 1: coeff, factors = lc, [f] else: H = dmp_raise([K.one, s*K.unit], u, 0, K) for i, (factor, _) in enumerate(factors): h = dmp_convert(factor, u, K.dom, K) h, _, g = dmp_inner_gcd(h, g, u, K) h = dmp_compose(h, H, u, K) factors[i] = h return lc, dmp_trial_division(F, factors, u, K)
def dmp_zz_factor(f, u, K): """Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys.factortools import dmp_zz_factor >>> from sympy.polys.algebratools import ZZ >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ) (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== .. [Gathen99] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, First Edition, Cambridge University Press, 1999, pp. 427 """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all([d <= 0 for d in dmp_degree_list(g, u)]): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) for h in H: k = 0 while True: q, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): f, k = q, k + 1 else: break factors.append((h, k)) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)
def dmp_zz_factor(f, u, K): """Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys.factortools import dmp_zz_factor >>> from sympy.polys.algebratools import ZZ >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ) (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== .. [Gathen99] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, First Edition, Cambridge University Press, 1999, pp. 427 """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all([ d <= 0 for d in dmp_degree_list(g, u) ]): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) for h in H: k = 0 while True: q, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): f, k = q, k+1 else: break factors.append((h, k)) for g, k in dmp_zz_factor(G, u-1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)