Exemple #1
0
def test_polys():
    x = Symbol("x")

    ZZ = PythonIntegerRing()
    QQ = SymPyRationalField()

    for c in (Poly, Poly(x, x)):
        check(c)

    for c in (GFP, GFP([ZZ(1), ZZ(2), ZZ(3)], ZZ(7), ZZ)):
        check(c)
    for c in (DMP, DMP([ZZ(1), ZZ(2), ZZ(3)], 0, ZZ)):
        check(c)
    for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)], ZZ))):
        check(c)
    for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)):
        check(c)

    for c in (PythonIntegerRing, PythonIntegerRing()):
        check(c)
    for c in (SymPyIntegerRing, SymPyIntegerRing()):
        check(c)
    for c in (SymPyRationalField, SymPyRationalField()):
        check(c)

    for c in (PolynomialRing, PolynomialRing(ZZ, 'x', 'y')):
        check(c)
    for c in (FractionField, FractionField(ZZ, 'x', 'y')):
        check(c)

    for c in (ExpressionDomain, ExpressionDomain()):
        check(c)

    from sympy.polys.domains import HAS_FRACTION, HAS_GMPY

    if HAS_FRACTION:
        from sympy.polys.domains import PythonRationalField

        for c in (PythonRationalField, PythonRationalField()):
            check(c)

    if HAS_GMPY:
        from sympy.polys.domains import GMPYIntegerRing, GMPYRationalField

        for c in (GMPYIntegerRing, GMPYIntegerRing()):
            check(c)
        for c in (GMPYRationalField, GMPYRationalField()):
            check(c)

    f = x**3 + x + 3
    g = lambda x: x

    for c in (RootOf, RootOf(f, 0), RootSum, RootSum(f, g)):
        check(c)
Exemple #2
0
def test_polys():
    x = Symbol("X")

    ZZ = PythonIntegerRing()
    QQ = PythonRationalField()

    for c in (Poly, Poly(x, x)):
        check(c)

    for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)):
        check(c)
    for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)):
        check(c)
    for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)):
        check(c)

    for c in (PythonIntegerRing, PythonIntegerRing()):
        check(c)
    for c in (PythonRationalField, PythonRationalField()):
        check(c)

    for c in (PolynomialRing, PolynomialRing(ZZ, 'x', 'y')):
        check(c)
    for c in (FractionField, FractionField(ZZ, 'x', 'y')):
        check(c)

    for c in (ExpressionDomain, ExpressionDomain()):
        check(c)

    from sympy.core.compatibility import HAS_GMPY

    if HAS_GMPY:
        from sympy.polys.domains import GMPYIntegerRing, GMPYRationalField

        for c in (GMPYIntegerRing, GMPYIntegerRing()):
            check(c)
        for c in (GMPYRationalField, GMPYRationalField()):
            check(c)

    f = x**3 + x + 3
    g = exp

    for c in (RootOf, RootOf(f, 0), RootSum, RootSum(f, g)):
        check(c)
Exemple #3
0
def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : Expr
        Element or expression whose minimal polynomial is to be calculated.

    x : Symbol, optional
        Independent variable of the minimal polynomial

    compose : boolean, optional (default=True)
        Method to use for computing minimal polynomial. If ``compose=True``
        (default) then ``_minpoly_compose`` is used, if ``compose=False`` then
        groebner bases are used.

    polys : boolean, optional (default=False)
        If ``True`` returns a ``Poly`` object else an ``Expr`` object.

    domain : Domain, optional
        Ground domain

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    If no ground domain is given, it will be generated automatically from the expression.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve, QQ
    >>> from sympy.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """

    ex = sympify(ex)
    if ex.is_number:
        # not sure if it's always needed but try it for numbers (issue 8354)
        ex = _mexpand(ex, recursive=True)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not domain:
        if ex.free_symbols:
            domain = FractionField(QQ, list(ex.free_symbols))
        else:
            domain = QQ
    if hasattr(domain, 'symbols') and x in domain.symbols:
        raise GeneratorsError("the variable %s is an element of the ground "
                              "domain %s" % (x, domain))

    if compose:
        result = _minpoly_compose(ex, x, domain)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not domain.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)
Exemple #4
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : algebraic element expression
    x : independent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` ``_minpoly_compose`` is used, if ``False`` the ``groebner`` algorithm
    polys : if ``True`` returns a ``Poly`` object
    domain : ground domain

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    If no ground domain is given, it will be generated automatically from the expression.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve, QQ
    >>> from sympy.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """
    from sympy.polys.polytools import degree
    from sympy.polys.domains import FractionField
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    dom = args.get('domain', None)

    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not dom:
        dom = FractionField(QQ, list(
            ex.free_symbols)) if ex.free_symbols else QQ
    if hasattr(dom, 'symbols') and x in dom.symbols:
        raise GeneratorsError(
            "the variable %s is an element of the ground domain %s" % (x, dom))

    if compose:
        result = _minpoly_compose(ex, x, dom)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not dom.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)
 def get_field(self):
     """Returns a field associated with `self`. """
     from sympy.polys.domains import FractionField
     return FractionField(self.dom, *self.gens)
Exemple #6
0
 def frac_field(self, *gens):
     """Returns a fraction field, i.e. `K(X)`. """
     from sympy.polys.domains import FractionField
     return FractionField(self, *gens)