def test_Domain_get_ring(): assert ZZ.has_assoc_Ring == True assert QQ.has_assoc_Ring == True assert ZZ[x].has_assoc_Ring == True assert QQ[x].has_assoc_Ring == True assert ZZ[x, y].has_assoc_Ring == True assert QQ[x, y].has_assoc_Ring == True assert ZZ.frac_field(x).has_assoc_Ring == True assert QQ.frac_field(x).has_assoc_Ring == True assert ZZ.frac_field(x, y).has_assoc_Ring == True assert QQ.frac_field(x, y).has_assoc_Ring == True assert EX.has_assoc_Ring == False assert RR.has_assoc_Ring == False assert ALG.has_assoc_Ring == False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] raises(DomainError, "EX.get_ring()") raises(DomainError, "RR.get_ring()") raises(DomainError, "ALG.get_ring()")
def test_Domain_get_ring(): assert ZZ.has_assoc_Ring == True assert QQ.has_assoc_Ring == True assert ZZ[x].has_assoc_Ring == True assert QQ[x].has_assoc_Ring == True assert ZZ[x,y].has_assoc_Ring == True assert QQ[x,y].has_assoc_Ring == True assert ZZ.frac_field(x).has_assoc_Ring == True assert QQ.frac_field(x).has_assoc_Ring == True assert ZZ.frac_field(x,y).has_assoc_Ring == True assert QQ.frac_field(x,y).has_assoc_Ring == True assert EX.has_assoc_Ring == False assert RR.has_assoc_Ring == False assert ALG.has_assoc_Ring == False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x,y].get_ring() == ZZ[x,y] assert QQ[x,y].get_ring() == QQ[x,y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x,y).get_ring() == ZZ[x,y] assert QQ.frac_field(x,y).get_ring() == QQ[x,y] raises(DomainError, "EX.get_ring()") raises(DomainError, "RR.get_ring()") raises(DomainError, "ALG.get_ring()")
def test_Domain_get_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ[x].has_assoc_Ring is True assert QQ[x].has_assoc_Ring is True assert ZZ[x, y].has_assoc_Ring is True assert QQ[x, y].has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] assert EX.get_ring() == EX assert RR.get_ring() == RR # XXX: This should also be like RR raises(DomainError, lambda: ALG.get_ring())
def test_Domain_get_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ[x].has_assoc_Ring is True assert QQ[x].has_assoc_Ring is True assert ZZ[x, y].has_assoc_Ring is True assert QQ[x, y].has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] assert EX.get_ring() == EX raises(DomainError, lambda: RR.get_ring()) raises(DomainError, lambda: ALG.get_ring())
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y] assert Domain.preprocess('Z') == ZZ assert Domain.preprocess('Q') == QQ assert Domain.preprocess('ZZ') == ZZ assert Domain.preprocess('QQ') == QQ assert Domain.preprocess('EX') == EX assert Domain.preprocess('FF(23)') == FF(23) assert Domain.preprocess('GF(23)') == GF(23) raises(OptionError, lambda: Domain.preprocess('Z[]')) assert Domain.preprocess('Z[x]') == ZZ[x] assert Domain.preprocess('Q[x]') == QQ[x] assert Domain.preprocess('ZZ[x]') == ZZ[x] assert Domain.preprocess('QQ[x]') == QQ[x] assert Domain.preprocess('Z[x,y]') == ZZ[x, y] assert Domain.preprocess('Q[x,y]') == QQ[x, y] assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y] assert Domain.preprocess('QQ[x,y]') == QQ[x, y] raises(OptionError, lambda: Domain.preprocess('Z()')) assert Domain.preprocess('Z(x)') == ZZ.frac_field(x) assert Domain.preprocess('Q(x)') == QQ.frac_field(x) assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x) assert Domain.preprocess('QQ(x)') == QQ.frac_field(x) assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I) assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I) assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess( 'QQ<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) raises(OptionError, lambda: Domain.preprocess('abc'))
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y] assert Domain.preprocess('Z') == ZZ assert Domain.preprocess('Q') == QQ assert Domain.preprocess('ZZ') == ZZ assert Domain.preprocess('QQ') == QQ assert Domain.preprocess('EX') == EX assert Domain.preprocess('FF(23)') == FF(23) assert Domain.preprocess('GF(23)') == GF(23) raises(OptionError, lambda: Domain.preprocess('Z[]')) assert Domain.preprocess('Z[x]') == ZZ[x] assert Domain.preprocess('Q[x]') == QQ[x] assert Domain.preprocess('ZZ[x]') == ZZ[x] assert Domain.preprocess('QQ[x]') == QQ[x] assert Domain.preprocess('Z[x,y]') == ZZ[x, y] assert Domain.preprocess('Q[x,y]') == QQ[x, y] assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y] assert Domain.preprocess('QQ[x,y]') == QQ[x, y] raises(OptionError, lambda: Domain.preprocess('Z()')) assert Domain.preprocess('Z(x)') == ZZ.frac_field(x) assert Domain.preprocess('Q(x)') == QQ.frac_field(x) assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x) assert Domain.preprocess('QQ(x)') == QQ.frac_field(x) assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I) assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I) assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess('QQ<sqrt(2), I>') == QQ.algebraic_field( sqrt(2), I) raises(OptionError, lambda: Domain.preprocess('abc'))
def test_Domain___eq__(): assert (ZZ[x, y] == ZZ[x, y]) == True assert (QQ[x, y] == QQ[x, y]) == True assert (ZZ[x, y] == QQ[x, y]) == False assert (QQ[x, y] == ZZ[x, y]) == False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) == True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) == True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) == False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) == False
def test_Domain___eq__(): assert (ZZ[x,y] == ZZ[x,y]) == True assert (QQ[x,y] == QQ[x,y]) == True assert (ZZ[x,y] == QQ[x,y]) == False assert (QQ[x,y] == ZZ[x,y]) == False assert (ZZ.frac_field(x,y) == ZZ.frac_field(x,y)) == True assert (QQ.frac_field(x,y) == QQ.frac_field(x,y)) == True assert (ZZ.frac_field(x,y) == QQ.frac_field(x,y)) == False assert (QQ.frac_field(x,y) == ZZ.frac_field(x,y)) == False
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y] assert Domain.preprocess("Z") == ZZ assert Domain.preprocess("Q") == QQ assert Domain.preprocess("ZZ") == ZZ assert Domain.preprocess("QQ") == QQ assert Domain.preprocess("EX") == EX assert Domain.preprocess("FF(23)") == FF(23) assert Domain.preprocess("GF(23)") == GF(23) raises(OptionError, "Domain.preprocess('Z[]')") assert Domain.preprocess("Z[x]") == ZZ[x] assert Domain.preprocess("Q[x]") == QQ[x] assert Domain.preprocess("ZZ[x]") == ZZ[x] assert Domain.preprocess("QQ[x]") == QQ[x] assert Domain.preprocess("Z[x,y]") == ZZ[x, y] assert Domain.preprocess("Q[x,y]") == QQ[x, y] assert Domain.preprocess("ZZ[x,y]") == ZZ[x, y] assert Domain.preprocess("QQ[x,y]") == QQ[x, y] raises(OptionError, "Domain.preprocess('Z()')") assert Domain.preprocess("Z(x)") == ZZ.frac_field(x) assert Domain.preprocess("Q(x)") == QQ.frac_field(x) assert Domain.preprocess("ZZ(x)") == ZZ.frac_field(x) assert Domain.preprocess("QQ(x)") == QQ.frac_field(x) assert Domain.preprocess("Z(x,y)") == ZZ.frac_field(x, y) assert Domain.preprocess("Q(x,y)") == QQ.frac_field(x, y) assert Domain.preprocess("ZZ(x,y)") == ZZ.frac_field(x, y) assert Domain.preprocess("QQ(x,y)") == QQ.frac_field(x, y) assert Domain.preprocess("Q<I>") == QQ.algebraic_field(I) assert Domain.preprocess("QQ<I>") == QQ.algebraic_field(I) assert Domain.preprocess("Q<sqrt(2), I>") == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess("QQ<sqrt(2), I>") == QQ.algebraic_field(sqrt(2), I) raises(OptionError, "Domain.preprocess('abc')")
def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ[x].get_exact() == ZZ[x] assert QQ[x].get_exact() == QQ[x] assert ZZ[x, y].get_exact() == ZZ[x, y] assert QQ[x, y].get_exact() == QQ[x, y] assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
def test_Domain___eq__(): assert (ZZ[x, y] == ZZ[x, y]) is True assert (QQ[x, y] == QQ[x, y]) is True assert (ZZ[x, y] == QQ[x, y]) is False assert (QQ[x, y] == ZZ[x, y]) is False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False assert RealField()[x] == RR[x]
def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ[x].get_exact() == ZZ[x] assert QQ[x].get_exact() == QQ[x] assert ZZ[x,y].get_exact() == ZZ[x,y] assert QQ[x,y].get_exact() == QQ[x,y] assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x,y).get_exact() == ZZ.frac_field(x,y) assert QQ.frac_field(x,y).get_exact() == QQ.frac_field(x,y)
def test_FracField_nested(): a, b, x = symbols('a b x') F1 = ZZ.frac_field(a, b) F2 = F1.frac_field(x) frac = F2(a + b) assert frac.numer == F1.poly_ring(x)(a + b) assert frac.numer.coeffs() == [F1(a + b)] assert frac.denom == F1.poly_ring(x)(1) F3 = ZZ.poly_ring(a, b) F4 = F3.frac_field(x) frac = F4(a + b) assert frac.numer == F3.poly_ring(x)(a + b) assert frac.numer.coeffs() == [F3(a + b)] assert frac.denom == F3.poly_ring(x)(1) frac = F2(F3(a + b)) assert frac.numer == F1.poly_ring(x)(a + b) assert frac.numer.coeffs() == [F1(a + b)] assert frac.denom == F1.poly_ring(x)(1) frac = F4(F1(a + b)) assert frac.numer == F3.poly_ring(x)(a + b) assert frac.numer.coeffs() == [F3(a + b)] assert frac.denom == F3.poly_ring(x)(1)
def test_Domain_convert(): def check_element(e1, e2, K1, K2, K3): assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) def check_domains(K1, K2): K3 = K1.unify(K2) check_element(K3.convert_from(K1.one, K1), K3.one, K1, K2, K3) check_element(K3.convert_from(K2.one, K2), K3.one, K1, K2, K3) check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3) check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3) def composite_domains(K): domains = [ K, K[y], K[z], K[y, z], K.frac_field(y), K.frac_field(z), K.frac_field(y, z), # XXX: These should be tested and made to work... # K.old_poly_ring(y), K.old_frac_field(y), ] return domains QQ2 = QQ.algebraic_field(sqrt(2)) QQ3 = QQ.algebraic_field(sqrt(3)) doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC] for i, K1 in enumerate(doms): for K2 in doms[i:]: for K3 in composite_domains(K1): for K4 in composite_domains(K2): check_domains(K3, K4) assert QQ.convert(10e-52) == QQ( 1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, xr = ring("x", ZZ) assert ZZ.convert(xr - xr) == 0 assert ZZ.convert(xr - xr, R.to_domain()) == 0 assert CC.convert(ZZ_I(1, 2)) == CC(1, 2) assert CC.convert(QQ_I(1, 2)) == CC(1, 2) K1 = QQ.frac_field(x) K2 = ZZ.frac_field(x) K3 = QQ[x] K4 = ZZ[x] Ks = [K1, K2, K3, K4] for Ka, Kb in product(Ks, Ks): assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x) assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2))
def test_Domain_get_field(): assert EX.has_assoc_Field == True assert ZZ.has_assoc_Field == True assert QQ.has_assoc_Field == True assert RR.has_assoc_Field == False assert ALG.has_assoc_Field == True assert ZZ[x].has_assoc_Field == True assert QQ[x].has_assoc_Field == True assert ZZ[x, y].has_assoc_Field == True assert QQ[x, y].has_assoc_Field == True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ raises(DomainError, "RR.get_field()") assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x, y].get_field() == ZZ.frac_field(x, y) assert QQ[x, y].get_field() == QQ.frac_field(x, y)
def test_Domain_get_field(): assert EX.has_assoc_Field == True assert ZZ.has_assoc_Field == True assert QQ.has_assoc_Field == True assert RR.has_assoc_Field == False assert ALG.has_assoc_Field == True assert ZZ[x].has_assoc_Field == True assert QQ[x].has_assoc_Field == True assert ZZ[x,y].has_assoc_Field == True assert QQ[x,y].has_assoc_Field == True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ raises(DomainError, "RR.get_field()") assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x,y].get_field() == ZZ.frac_field(x,y) assert QQ[x,y].get_field() == QQ.frac_field(x,y)
def test_Domain_get_field(): assert EX.has_assoc_Field is True assert ZZ.has_assoc_Field is True assert QQ.has_assoc_Field is True assert RR.has_assoc_Field is True assert ALG.has_assoc_Field is True assert ZZ[x].has_assoc_Field is True assert QQ[x].has_assoc_Field is True assert ZZ[x, y].has_assoc_Field is True assert QQ[x, y].has_assoc_Field is True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ assert RR.get_field() == RR assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x, y].get_field() == ZZ.frac_field(x, y) assert QQ[x, y].get_field() == QQ.frac_field(x, y)
def test_drop(): assert ZZ.drop(x) == ZZ assert ZZ[x].drop(x) == ZZ assert ZZ[x, y].drop(x) == ZZ[y] assert ZZ.frac_field(x).drop(x) == ZZ assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y) assert ZZ[x][y].drop(y) == ZZ[x] assert ZZ[x][y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x) Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y])) K = FiniteExtension(Poly(x**2-1, x, domain=ZZ)) assert Ky.drop(y) == K raises(GeneratorsError, lambda: Ky.drop(x))
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain( [1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain( [S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)]) assert construct_domain( [3.14, 1, S(1)/2]) == (RR, [RR(3.14), RR(1.0), RR(0.5)]) assert construct_domain( [3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain( [3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain( [1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2)) assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \ (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \ (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))]) dom = ZZ[x] assert construct_domain([2*x, 3]) == \ (dom, [dom.convert(2*x), dom.convert(3)]) dom = ZZ[x, y] assert construct_domain([2*x, 3*y]) == \ (dom, [dom.convert(2*x), dom.convert(3*y)]) dom = QQ[x] assert construct_domain([x/2, 3]) == \ (dom, [dom.convert(x/2), dom.convert(3)]) dom = QQ[x, y] assert construct_domain([x/2, 3*y]) == \ (dom, [dom.convert(x/2), dom.convert(3*y)]) dom = RR[x] assert construct_domain([x/2, 3.5]) == \ (dom, [dom.convert(x/2), dom.convert(3.5)]) dom = RR[x, y] assert construct_domain([x/2, 3.5*y]) == \ (dom, [dom.convert(x/2), dom.convert(3.5*y)]) dom = ZZ.frac_field(x) assert construct_domain([2/x, 3]) == \ (dom, [dom.convert(2/x), dom.convert(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2/x, 3*y]) == \ (dom, [dom.convert(2/x), dom.convert(3*y)]) dom = RR.frac_field(x) assert construct_domain([2/x, 3.5]) == \ (dom, [dom.convert(2/x), dom.convert(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2/x, 3.5*y]) == \ (dom, [dom.convert(2/x), dom.convert(3.5*y)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y) assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX
def test_FractionField__init(): F, = field("", ZZ) assert ZZ.frac_field() == F.to_domain()
def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(ZZ_I, F3) == ZZ_I assert unify(ZZ_I, ZZ) == ZZ_I assert unify(ZZ_I, ZZ_I) == ZZ_I assert unify(ZZ_I, QQ) == QQ_I assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(ZZ_I, RR) == CC assert unify(ZZ_I, CC) == CC assert unify(ZZ_I, ZZ[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, EX) == EX assert unify(QQ_I, F3) == QQ_I assert unify(QQ_I, ZZ) == QQ_I assert unify(QQ_I, ZZ_I) == QQ_I assert unify(QQ_I, QQ) == QQ_I assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(QQ_I, RR) == CC assert unify(QQ_I, CC) == CC assert unify(QQ_I, ZZ[x]) == QQ_I[x] assert unify(QQ_I, ZZ_I[x]) == QQ_I[x] assert unify(QQ_I, QQ[x]) == QQ_I[x] assert unify(QQ_I, QQ_I[x]) == QQ_I[x] assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y) assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)]) result = construct_domain([3.14, 1, S(1)/2]) assert isinstance(result[0], RealField) assert result[1] == [RR(3.14), RR(1.0), RR(0.5)] assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))]) assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))]) alg = QQ.algebraic_field(sqrt(2)) assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \ (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \ (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))]) dom = ZZ[x] assert construct_domain([2*x, 3]) == \ (dom, [dom.convert(2*x), dom.convert(3)]) dom = ZZ[x, y] assert construct_domain([2*x, 3*y]) == \ (dom, [dom.convert(2*x), dom.convert(3*y)]) dom = QQ[x] assert construct_domain([x/2, 3]) == \ (dom, [dom.convert(x/2), dom.convert(3)]) dom = QQ[x, y] assert construct_domain([x/2, 3*y]) == \ (dom, [dom.convert(x/2), dom.convert(3*y)]) dom = RR[x] assert construct_domain([x/2, 3.5]) == \ (dom, [dom.convert(x/2), dom.convert(3.5)]) dom = RR[x, y] assert construct_domain([x/2, 3.5*y]) == \ (dom, [dom.convert(x/2), dom.convert(3.5*y)]) dom = ZZ.frac_field(x) assert construct_domain([2/x, 3]) == \ (dom, [dom.convert(2/x), dom.convert(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2/x, 3*y]) == \ (dom, [dom.convert(2/x), dom.convert(3*y)]) dom = RR.frac_field(x) assert construct_domain([2/x, 3.5]) == \ (dom, [dom.convert(2/x), dom.convert(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2/x, 3.5*y]) == \ (dom, [dom.convert(2/x), dom.convert(3.5*y)]) dom = RealField(prec=336)[x] assert construct_domain([pi.evalf(100)*x]) == \ (dom, [dom.convert(pi.evalf(100)*x)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(S(2)/3) == (QQ, QQ(2, 3)) assert construct_domain({}) == (ZZ, {})
def test___eq__(): assert not QQ['x'] == ZZ['x'] assert not QQ.frac_field(x) == ZZ.frac_field(x)
def test_Domain_unify_composite(): assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
def test_Domain__unify(): assert ZZ.unify(ZZ) == ZZ assert QQ.unify(QQ) == QQ assert ZZ.unify(QQ) == QQ assert QQ.unify(ZZ) == QQ assert EX.unify(EX) == EX assert ZZ.unify(EX) == EX assert QQ.unify(EX) == EX assert EX.unify(ZZ) == EX assert EX.unify(QQ) == EX assert ZZ.poly_ring(x).unify(EX) == EX assert ZZ.frac_field(x).unify(EX) == EX assert EX.unify(ZZ.poly_ring(x)) == EX assert EX.unify(ZZ.frac_field(x)) == EX assert ZZ.poly_ring(x, y).unify(EX) == EX assert ZZ.frac_field(x, y).unify(EX) == EX assert EX.unify(ZZ.poly_ring(x, y)) == EX assert EX.unify(ZZ.frac_field(x, y)) == EX assert QQ.poly_ring(x).unify(EX) == EX assert QQ.frac_field(x).unify(EX) == EX assert EX.unify(QQ.poly_ring(x)) == EX assert EX.unify(QQ.frac_field(x)) == EX assert QQ.poly_ring(x, y).unify(EX) == EX assert QQ.frac_field(x, y).unify(EX) == EX assert EX.unify(QQ.poly_ring(x, y)) == EX assert EX.unify(QQ.frac_field(x, y)) == EX assert ZZ.poly_ring(x).unify(ZZ) == ZZ.poly_ring(x) assert ZZ.poly_ring(x).unify(QQ) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(ZZ) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(QQ) == QQ.poly_ring(x) assert ZZ.unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert QQ.unify(ZZ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).unify(ZZ) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(ZZ) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y) assert ZZ.unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert QQ.unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.frac_field(x).unify(ZZ) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ) == QQ.frac_field(x) assert ZZ.unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert QQ.unify(ZZ.frac_field(x)) == EX # QQ.frac_field(x) assert ZZ.unify(QQ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(QQ) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(ZZ) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(QQ) == QQ.frac_field(x, y) assert ZZ.unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert QQ.unify(ZZ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert ZZ.unify(QQ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert ZZ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert ZZ.frac_field(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ.frac_field(x)) == QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert QQ.frac_field(x, y).unify(ZZ.frac_field(x)) == QQ.frac_field(x, y) assert QQ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert ZZ.frac_field(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert QQ.frac_field(x).unify(ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert QQ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert QQ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert QQ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert ZZ.poly_ring(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert ZZ.poly_ring(x).unify(QQ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.poly_ring(x).unify(ZZ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.poly_ring(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert ZZ.poly_ring(x, y).unify(QQ.frac_field(x)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x, y).unify(ZZ.frac_field(x)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert ZZ.poly_ring(x).unify(QQ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x).unify(ZZ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.poly_ring(x, y).unify(QQ.frac_field(x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.poly_ring(x, y).unify(ZZ.frac_field(x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.poly_ring(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert ZZ.frac_field(x).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ.poly_ring(x)) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ.poly_ring(x)) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ.poly_ring(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(QQ.poly_ring(x)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(ZZ.poly_ring(x)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(QQ.poly_ring(x)) == QQ.frac_field(x, y) assert ZZ.frac_field(x).unify(ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x).unify(QQ.poly_ring(x, y)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x).unify(ZZ.poly_ring(x, y)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x).unify(QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.frac_field(x, y).unify(QQ.poly_ring(x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.frac_field(x, y).unify(ZZ.poly_ring(x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.frac_field(x, y).unify(QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z) alg = QQ.algebraic_field(sqrt(5)) assert alg.unify(alg[x, y]) == alg[x, y] assert alg[x, y].unify(alg) == alg[x, y] assert alg.unify(alg.frac_field(x, y)) == alg.frac_field(x, y) assert alg.frac_field(x, y).unify(alg) == alg.frac_field(x, y) ext = QQ.algebraic_field(sqrt(7)) raises(NotImplementedError, lambda: alg.unify(ext)) raises(UnificationFailed, lambda: ZZ.poly_ring(x, y).unify(ZZ, gens=(y, z))) raises(UnificationFailed, lambda: ZZ.unify(ZZ.poly_ring(x, y), gens=(y, z)))
def test_FractionField__init(): raises(GeneratorsNeeded, lambda: ZZ.frac_field())
def _construct_composite(coeffs, opt): """Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """ numers, denoms = [], [] for coeff in coeffs: numer, denom = coeff.as_numer_denom() numers.append(numer) denoms.append(denom) polys, gens = parallel_dict_from_basic(numers + denoms) # XXX: sorting if any(gen.is_number for gen in gens): return None # generators are number-like so lets better use EX n = len(gens) k = len(polys)//2 numers = polys[:k] denoms = polys[k:] if opt.field: fractions = True else: fractions, zeros = False, (0,)*n for denom in denoms: if len(denom) > 1 or zeros not in denom: fractions = True break result = [] if not fractions: coeffs = set([]) for numer, denom in zip(numers, denoms): denom = denom[zeros] for monom, coeff in numer.iteritems(): coeff /= denom coeffs.add(coeff) numer[monom] = coeff rationals, reals = False, False for coeff in coeffs: if coeff.is_Rational: if not coeff.is_Integer: rationals = True elif coeff.is_Real: reals = True break if reals: ground = RR elif rationals: ground = QQ else: ground = ZZ domain = ground.poly_ring(*gens) for numer in numers: for monom, coeff in numer.iteritems(): numer[monom] = ground.from_sympy(coeff) result.append(domain(numer)) else: domain = ZZ.frac_field(*gens) for numer, denom in zip(numers, denoms): for monom, coeff in numer.iteritems(): numer[monom] = ZZ.from_sympy(coeff) for monom, coeff in denom.iteritems(): denom[monom] = ZZ.from_sympy(coeff) result.append(domain((numer, denom))) return domain, result
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S(1) / 2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)]) assert construct_domain([3.14, 1, S(1) / 2]) == (RR, [RR(3.14), RR(1.0), RR(0.5)]) assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2)) assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \ (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \ (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))]) dom = ZZ[x] assert construct_domain([2*x, 3]) == \ (dom, [dom.convert(2*x), dom.convert(3)]) dom = ZZ[x, y] assert construct_domain([2*x, 3*y]) == \ (dom, [dom.convert(2*x), dom.convert(3*y)]) dom = QQ[x] assert construct_domain([x/2, 3]) == \ (dom, [dom.convert(x/2), dom.convert(3)]) dom = QQ[x, y] assert construct_domain([x/2, 3*y]) == \ (dom, [dom.convert(x/2), dom.convert(3*y)]) dom = RR[x] assert construct_domain([x/2, 3.5]) == \ (dom, [dom.convert(x/2), dom.convert(3.5)]) dom = RR[x, y] assert construct_domain([x/2, 3.5*y]) == \ (dom, [dom.convert(x/2), dom.convert(3.5*y)]) dom = ZZ.frac_field(x) assert construct_domain([2/x, 3]) == \ (dom, [dom.convert(2/x), dom.convert(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2/x, 3*y]) == \ (dom, [dom.convert(2/x), dom.convert(3*y)])
def test_Domain__unify(): assert ZZ.unify(ZZ) == ZZ assert QQ.unify(QQ) == QQ assert ZZ.unify(QQ) == QQ assert QQ.unify(ZZ) == QQ assert EX.unify(EX) == EX assert ZZ.unify(EX) == EX assert QQ.unify(EX) == EX assert EX.unify(ZZ) == EX assert EX.unify(QQ) == EX assert ZZ.poly_ring('x').unify(EX) == EX assert ZZ.frac_field('x').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x')) == EX assert EX.unify(ZZ.frac_field('x')) == EX assert ZZ.poly_ring('x','y').unify(EX) == EX assert ZZ.frac_field('x','y').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x','y')) == EX assert EX.unify(ZZ.frac_field('x','y')) == EX assert QQ.poly_ring('x').unify(EX) == EX assert QQ.frac_field('x').unify(EX) == EX assert EX.unify(QQ.poly_ring('x')) == EX assert EX.unify(QQ.frac_field('x')) == EX assert QQ.poly_ring('x','y').unify(EX) == EX assert QQ.frac_field('x','y').unify(EX) == EX assert EX.unify(QQ.poly_ring('x','y')) == EX assert EX.unify(QQ.frac_field('x','y')) == EX assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x','y').unify(ZZ) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(ZZ) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y') assert ZZ.unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y') assert QQ.unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x') assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert QQ.unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert ZZ.unify(QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ) == QQ.frac_field('x','y') assert ZZ.unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert QQ.unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert ZZ.unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.poly_ring('x','y','z') assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ.frac_field('x')) == QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert ZZ.frac_field('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert QQ.frac_field('x').unify(ZZ.frac_field('x','y')) == QQ.frac_field('x','y') assert QQ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.poly_ring('x').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y') assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert ZZ.poly_ring('x').unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ.poly_ring('x')) == QQ.frac_field('x','y') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x','y')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x').unify(QQ.poly_ring('x','y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(ZZ.poly_ring('x','y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(QQ.poly_ring('x','y')) == QQ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == QQ.frac_field('x','y','z') alg = QQ.algebraic_field(sqrt(5)) assert alg.unify(alg['x','y']) == alg['x','y'] assert alg['x','y'].unify(alg) == alg['x','y'] assert alg.unify(alg.frac_field('x','y')) == alg.frac_field('x','y') assert alg.frac_field('x','y').unify(alg) == alg.frac_field('x','y') ext = QQ.algebraic_field(sqrt(7)) raises(NotImplementedError, "alg.unify(ext)") raises(UnificationFailed, "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))") raises(UnificationFailed, "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX
def test_Domain__unify(): assert ZZ.unify(ZZ) == ZZ assert QQ.unify(QQ) == QQ assert ZZ.unify(QQ) == QQ assert QQ.unify(ZZ) == QQ assert EX.unify(EX) == EX assert ZZ.unify(EX) == EX assert QQ.unify(EX) == EX assert EX.unify(ZZ) == EX assert EX.unify(QQ) == EX assert ZZ.poly_ring('x').unify(EX) == EX assert ZZ.frac_field('x').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x')) == EX assert EX.unify(ZZ.frac_field('x')) == EX assert ZZ.poly_ring('x','y').unify(EX) == EX assert ZZ.frac_field('x','y').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x','y')) == EX assert EX.unify(ZZ.frac_field('x','y')) == EX assert QQ.poly_ring('x').unify(EX) == EX assert QQ.frac_field('x').unify(EX) == EX assert EX.unify(QQ.poly_ring('x')) == EX assert EX.unify(QQ.frac_field('x')) == EX assert QQ.poly_ring('x','y').unify(EX) == EX assert QQ.frac_field('x','y').unify(EX) == EX assert EX.unify(QQ.poly_ring('x','y')) == EX assert EX.unify(QQ.frac_field('x','y')) == EX assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x','y').unify(ZZ) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(ZZ) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(QQ) == QQ.poly_ring('x','y') assert ZZ.unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y') assert QQ.unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x') assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert QQ.unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert ZZ.unify(QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ) == QQ.frac_field('x','y') assert ZZ.unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert QQ.unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert ZZ.unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x')) == QQ.poly_ring('x','y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == ZZ.poly_ring('x','y') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert QQ.poly_ring('x').unify(QQ.poly_ring('x','y')) == QQ.poly_ring('x','y') assert ZZ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.poly_ring('x','y','z') assert ZZ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert QQ.poly_ring('x','y').unify(ZZ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert QQ.poly_ring('x','y').unify(QQ.poly_ring('x','z')) == QQ.poly_ring('x','y','z') assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ.frac_field('x')) == QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert ZZ.frac_field('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert QQ.frac_field('x').unify(ZZ.frac_field('x','y')) == QQ.frac_field('x','y') assert QQ.frac_field('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(ZZ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.poly_ring('x').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x')) == ZZ.frac_field('x','y') assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x','y').unify(QQ.frac_field('x')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x','y')) == ZZ.frac_field('x','y') assert ZZ.poly_ring('x').unify(QQ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(ZZ.frac_field('x','y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(QQ.frac_field('x','y')) == QQ.frac_field('x','y') assert ZZ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x','y').unify(ZZ.frac_field('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x','y').unify(QQ.frac_field('x','z')) == QQ.frac_field('x','y','z') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x') assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x','y').unify(QQ.poly_ring('x')) == QQ.frac_field('x','y') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x','y')) == ZZ.frac_field('x','y') assert ZZ.frac_field('x').unify(QQ.poly_ring('x','y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(ZZ.poly_ring('x','y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(QQ.poly_ring('x','y')) == QQ.frac_field('x','y') assert ZZ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == ZZ.frac_field('x','y','z') assert ZZ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(ZZ.poly_ring('x','z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x','y').unify(QQ.poly_ring('x','z')) == QQ.frac_field('x','y','z') raises(UnificationFailed, "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))") raises(UnificationFailed, "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)]) result = construct_domain([3.14, 1, S.Half]) assert isinstance(result[0], RealField) assert result[1] == [RR(3.14), RR(1.0), RR(0.5)] assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))]) assert construct_domain([x, sqrt(x), sqrt(y) ]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))]) alg = QQ.algebraic_field(sqrt(2)) assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \ (alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \ (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))]) dom = ZZ[x] assert construct_domain([2*x, 3]) == \ (dom, [dom.convert(2*x), dom.convert(3)]) dom = ZZ[x, y] assert construct_domain([2*x, 3*y]) == \ (dom, [dom.convert(2*x), dom.convert(3*y)]) dom = QQ[x] assert construct_domain([x/2, 3]) == \ (dom, [dom.convert(x/2), dom.convert(3)]) dom = QQ[x, y] assert construct_domain([x/2, 3*y]) == \ (dom, [dom.convert(x/2), dom.convert(3*y)]) dom = RR[x] assert construct_domain([x/2, 3.5]) == \ (dom, [dom.convert(x/2), dom.convert(3.5)]) dom = RR[x, y] assert construct_domain([x/2, 3.5*y]) == \ (dom, [dom.convert(x/2), dom.convert(3.5*y)]) dom = ZZ.frac_field(x) assert construct_domain([2/x, 3]) == \ (dom, [dom.convert(2/x), dom.convert(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2/x, 3*y]) == \ (dom, [dom.convert(2/x), dom.convert(3*y)]) dom = RR.frac_field(x) assert construct_domain([2/x, 3.5]) == \ (dom, [dom.convert(2/x), dom.convert(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2/x, 3.5*y]) == \ (dom, [dom.convert(2/x), dom.convert(3.5*y)]) dom = RealField(prec=336)[x] assert construct_domain([pi.evalf(100)*x]) == \ (dom, [dom.convert(pi.evalf(100)*x)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(S(2) / 3) == (QQ, QQ(2, 3)) assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3)) assert construct_domain({}) == (ZZ, {})
def test_Domain__unify(): assert ZZ.unify(ZZ) == ZZ assert QQ.unify(QQ) == QQ assert ZZ.unify(QQ) == QQ assert QQ.unify(ZZ) == QQ assert EX.unify(EX) == EX assert ZZ.unify(EX) == EX assert QQ.unify(EX) == EX assert EX.unify(ZZ) == EX assert EX.unify(QQ) == EX assert ZZ.poly_ring('x').unify(EX) == EX assert ZZ.frac_field('x').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x')) == EX assert EX.unify(ZZ.frac_field('x')) == EX assert ZZ.poly_ring('x', 'y').unify(EX) == EX assert ZZ.frac_field('x', 'y').unify(EX) == EX assert EX.unify(ZZ.poly_ring('x', 'y')) == EX assert EX.unify(ZZ.frac_field('x', 'y')) == EX assert QQ.poly_ring('x').unify(EX) == EX assert QQ.frac_field('x').unify(EX) == EX assert EX.unify(QQ.poly_ring('x')) == EX assert EX.unify(QQ.frac_field('x')) == EX assert QQ.poly_ring('x', 'y').unify(EX) == EX assert QQ.frac_field('x', 'y').unify(EX) == EX assert EX.unify(QQ.poly_ring('x', 'y')) == EX assert EX.unify(QQ.frac_field('x', 'y')) == EX assert ZZ.poly_ring('x').unify(ZZ) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ) == QQ.poly_ring('x') assert ZZ.unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert QQ.unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x', 'y').unify(ZZ) == ZZ.poly_ring('x', 'y') assert ZZ.poly_ring('x', 'y').unify(QQ) == QQ.poly_ring('x', 'y') assert QQ.poly_ring('x', 'y').unify(ZZ) == QQ.poly_ring('x', 'y') assert QQ.poly_ring('x', 'y').unify(QQ) == QQ.poly_ring('x', 'y') assert ZZ.unify(ZZ.poly_ring('x', 'y')) == ZZ.poly_ring('x', 'y') assert QQ.unify(ZZ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y') assert ZZ.unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y') assert QQ.unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring('x', 'y') assert ZZ.frac_field('x').unify(ZZ) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ) == QQ.frac_field('x') assert ZZ.unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert QQ.unify(ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert ZZ.unify(QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x', 'y').unify(ZZ) == ZZ.frac_field('x', 'y') assert ZZ.frac_field('x', 'y').unify(QQ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x', 'y').unify(ZZ) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x', 'y').unify(QQ) == QQ.frac_field('x', 'y') assert ZZ.unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field('x', 'y') assert QQ.unify(ZZ.frac_field('x', 'y')) == EX # QQ.frac_field('x','y') assert ZZ.unify(QQ.frac_field('x', 'y')) == EX # QQ.frac_field('x','y') assert QQ.unify(QQ.frac_field('x', 'y')) == QQ.frac_field('x', 'y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x')) == ZZ.poly_ring('x') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x')) == QQ.poly_ring('x') assert QQ.poly_ring('x').unify(QQ.poly_ring('x')) == QQ.poly_ring('x') assert ZZ.poly_ring('x', 'y').unify(ZZ.poly_ring('x')) == ZZ.poly_ring( 'x', 'y') assert ZZ.poly_ring('x', 'y').unify(QQ.poly_ring('x')) == QQ.poly_ring( 'x', 'y') assert QQ.poly_ring('x', 'y').unify(ZZ.poly_ring('x')) == QQ.poly_ring( 'x', 'y') assert QQ.poly_ring('x', 'y').unify(QQ.poly_ring('x')) == QQ.poly_ring( 'x', 'y') assert ZZ.poly_ring('x').unify(ZZ.poly_ring('x', 'y')) == ZZ.poly_ring( 'x', 'y') assert ZZ.poly_ring('x').unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring( 'x', 'y') assert QQ.poly_ring('x').unify(ZZ.poly_ring('x', 'y')) == QQ.poly_ring( 'x', 'y') assert QQ.poly_ring('x').unify(QQ.poly_ring('x', 'y')) == QQ.poly_ring( 'x', 'y') assert ZZ.poly_ring('x', 'y').unify(ZZ.poly_ring('x', 'z')) == ZZ.poly_ring( 'x', 'y', 'z') assert ZZ.poly_ring('x', 'y').unify(QQ.poly_ring('x', 'z')) == QQ.poly_ring( 'x', 'y', 'z') assert QQ.poly_ring('x', 'y').unify(ZZ.poly_ring('x', 'z')) == QQ.poly_ring( 'x', 'y', 'z') assert QQ.poly_ring('x', 'y').unify(QQ.poly_ring('x', 'z')) == QQ.poly_ring( 'x', 'y', 'z') assert ZZ.frac_field('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(ZZ.frac_field('x')) == QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.frac_field('x', 'y').unify(ZZ.frac_field('x')) == ZZ.frac_field( 'x', 'y') assert ZZ.frac_field('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field( 'x', 'y') assert QQ.frac_field('x', 'y').unify(ZZ.frac_field('x')) == QQ.frac_field( 'x', 'y') assert QQ.frac_field('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field( 'x', 'y') assert ZZ.frac_field('x').unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field( 'x', 'y') assert ZZ.frac_field('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field( 'x', 'y') assert QQ.frac_field('x').unify(ZZ.frac_field('x', 'y')) == QQ.frac_field( 'x', 'y') assert QQ.frac_field('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field( 'x', 'y') assert ZZ.frac_field('x', 'y').unify(ZZ.frac_field('x', 'z')) == ZZ.frac_field( 'x', 'y', 'z') assert ZZ.frac_field('x', 'y').unify(QQ.frac_field('x', 'z')) == QQ.frac_field( 'x', 'y', 'z') assert QQ.frac_field('x', 'y').unify(ZZ.frac_field('x', 'z')) == QQ.frac_field( 'x', 'y', 'z') assert QQ.frac_field('x', 'y').unify(QQ.frac_field('x', 'z')) == QQ.frac_field( 'x', 'y', 'z') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x')) == ZZ.frac_field('x') assert ZZ.poly_ring('x').unify( QQ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify( ZZ.frac_field('x')) == EX # QQ.frac_field('x') assert QQ.poly_ring('x').unify(QQ.frac_field('x')) == QQ.frac_field('x') assert ZZ.poly_ring('x', 'y').unify(ZZ.frac_field('x')) == ZZ.frac_field( 'x', 'y') assert ZZ.poly_ring('x', 'y').unify( QQ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x', 'y').unify( ZZ.frac_field('x')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x', 'y').unify(QQ.frac_field('x')) == QQ.frac_field( 'x', 'y') assert ZZ.poly_ring('x').unify(ZZ.frac_field('x', 'y')) == ZZ.frac_field( 'x', 'y') assert ZZ.poly_ring('x').unify(QQ.frac_field( 'x', 'y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(ZZ.frac_field( 'x', 'y')) == EX # QQ.frac_field('x','y') assert QQ.poly_ring('x').unify(QQ.frac_field('x', 'y')) == QQ.frac_field( 'x', 'y') assert ZZ.poly_ring('x', 'y').unify(ZZ.frac_field('x', 'z')) == ZZ.frac_field( 'x', 'y', 'z') assert ZZ.poly_ring('x', 'y').unify(QQ.frac_field( 'x', 'z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x', 'y').unify(ZZ.frac_field( 'x', 'z')) == EX # QQ.frac_field('x','y','z') assert QQ.poly_ring('x', 'y').unify(QQ.frac_field('x', 'z')) == QQ.frac_field( 'x', 'y', 'z') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x')) == ZZ.frac_field('x') assert ZZ.frac_field('x').unify( QQ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify( ZZ.poly_ring('x')) == EX # QQ.frac_field('x') assert QQ.frac_field('x').unify(QQ.poly_ring('x')) == QQ.frac_field('x') assert ZZ.frac_field('x', 'y').unify(ZZ.poly_ring('x')) == ZZ.frac_field( 'x', 'y') assert ZZ.frac_field('x', 'y').unify( QQ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x', 'y').unify( ZZ.poly_ring('x')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x', 'y').unify(QQ.poly_ring('x')) == QQ.frac_field( 'x', 'y') assert ZZ.frac_field('x').unify(ZZ.poly_ring('x', 'y')) == ZZ.frac_field( 'x', 'y') assert ZZ.frac_field('x').unify(QQ.poly_ring( 'x', 'y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(ZZ.poly_ring( 'x', 'y')) == EX # QQ.frac_field('x','y') assert QQ.frac_field('x').unify(QQ.poly_ring('x', 'y')) == QQ.frac_field( 'x', 'y') assert ZZ.frac_field('x', 'y').unify(ZZ.poly_ring('x', 'z')) == ZZ.frac_field( 'x', 'y', 'z') assert ZZ.frac_field('x', 'y').unify(QQ.poly_ring( 'x', 'z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x', 'y').unify(ZZ.poly_ring( 'x', 'z')) == EX # QQ.frac_field('x','y','z') assert QQ.frac_field('x', 'y').unify(QQ.poly_ring('x', 'z')) == QQ.frac_field( 'x', 'y', 'z') alg = QQ.algebraic_field(sqrt(5)) assert alg.unify(alg['x', 'y']) == alg['x', 'y'] assert alg['x', 'y'].unify(alg) == alg['x', 'y'] assert alg.unify(alg.frac_field('x', 'y')) == alg.frac_field('x', 'y') assert alg.frac_field('x', 'y').unify(alg) == alg.frac_field('x', 'y') ext = QQ.algebraic_field(sqrt(7)) raises(NotImplementedError, "alg.unify(ext)") raises(UnificationFailed, "ZZ.poly_ring('x','y').unify(ZZ, gens=('y', 'z'))") raises(UnificationFailed, "ZZ.unify(ZZ.poly_ring('x','y'), gens=('y', 'z'))")
def test_inject(): assert ZZ.inject(x, y, z) == ZZ[x, y, z] assert ZZ[x].inject(y, z) == ZZ[x, y, z] assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z) raises(GeneratorsError, "ZZ[x].inject(x)")
def _construct_composite(coeffs, opt): """Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """ numers, denoms = [], [] for coeff in coeffs: numer, denom = coeff.as_numer_denom() numers.append(numer) denoms.append(denom) polys, gens = parallel_dict_from_basic(numers + denoms) # XXX: sorting if any(gen.is_number for gen in gens): return None # generators are number-like so lets better use EX n = len(gens) k = len(polys) // 2 numers = polys[:k] denoms = polys[k:] if opt.field: fractions = True else: fractions, zeros = False, (0,) * n for denom in denoms: if len(denom) > 1 or zeros not in denom: fractions = True break result = [] if not fractions: coeffs = set([]) for numer, denom in zip(numers, denoms): denom = denom[zeros] for monom, coeff in numer.iteritems(): coeff /= denom coeffs.add(coeff) numer[monom] = coeff rationals, reals = False, False for coeff in coeffs: if coeff.is_Rational: if not coeff.is_Integer: rationals = True elif coeff.is_Real: reals = True break if reals: ground = RR elif rationals: ground = QQ else: ground = ZZ domain = ground.poly_ring(*gens) for numer in numers: for monom, coeff in numer.iteritems(): numer[monom] = ground.from_sympy(coeff) result.append(domain(numer)) else: domain = ZZ.frac_field(*gens) for numer, denom in zip(numers, denoms): for monom, coeff in numer.iteritems(): numer[monom] = ZZ.from_sympy(coeff) for monom, coeff in denom.iteritems(): denom[monom] = ZZ.from_sympy(coeff) result.append(domain((numer, denom))) return domain, result
def test_Domain__unify(): assert ZZ.unify(ZZ) == ZZ assert QQ.unify(QQ) == QQ assert ZZ.unify(QQ) == QQ assert QQ.unify(ZZ) == QQ assert EX.unify(EX) == EX assert ZZ.unify(EX) == EX assert QQ.unify(EX) == EX assert EX.unify(ZZ) == EX assert EX.unify(QQ) == EX assert ZZ.poly_ring(x).unify(EX) == EX assert ZZ.frac_field(x).unify(EX) == EX assert EX.unify(ZZ.poly_ring(x)) == EX assert EX.unify(ZZ.frac_field(x)) == EX assert ZZ.poly_ring(x, y).unify(EX) == EX assert ZZ.frac_field(x, y).unify(EX) == EX assert EX.unify(ZZ.poly_ring(x, y)) == EX assert EX.unify(ZZ.frac_field(x, y)) == EX assert QQ.poly_ring(x).unify(EX) == EX assert QQ.frac_field(x).unify(EX) == EX assert EX.unify(QQ.poly_ring(x)) == EX assert EX.unify(QQ.frac_field(x)) == EX assert QQ.poly_ring(x, y).unify(EX) == EX assert QQ.frac_field(x, y).unify(EX) == EX assert EX.unify(QQ.poly_ring(x, y)) == EX assert EX.unify(QQ.frac_field(x, y)) == EX assert ZZ.poly_ring(x).unify(ZZ) == ZZ.poly_ring(x) assert ZZ.poly_ring(x).unify(QQ) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(ZZ) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(QQ) == QQ.poly_ring(x) assert ZZ.unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert QQ.unify(ZZ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).unify(ZZ) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(ZZ) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(QQ) == QQ.poly_ring(x, y) assert ZZ.unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert QQ.unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.frac_field(x).unify(ZZ) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ) == QQ.frac_field(x) assert ZZ.unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert QQ.unify(ZZ.frac_field(x)) == EX # QQ.frac_field(x) assert ZZ.unify(QQ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(QQ) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(ZZ) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(QQ) == QQ.frac_field(x, y) assert ZZ.unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert QQ.unify(ZZ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert ZZ.unify(QQ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert ZZ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x) assert QQ.poly_ring(x).unify(QQ.poly_ring(x)) == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert ZZ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert ZZ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x).unify(ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert QQ.poly_ring(x).unify(QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert ZZ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert ZZ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert QQ.poly_ring(x, y).unify(ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert QQ.poly_ring(x, y).unify(QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert ZZ.frac_field(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ.frac_field(x)) == QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert QQ.frac_field(x, y).unify(ZZ.frac_field(x)) == QQ.frac_field(x, y) assert QQ.frac_field(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert ZZ.frac_field(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert QQ.frac_field(x).unify(ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert QQ.frac_field(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert QQ.frac_field(x, y).unify(ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert QQ.frac_field(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert ZZ.poly_ring(x).unify(ZZ.frac_field(x)) == ZZ.frac_field(x) assert ZZ.poly_ring(x).unify(QQ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.poly_ring(x).unify(ZZ.frac_field(x)) == EX # QQ.frac_field(x) assert QQ.poly_ring(x).unify(QQ.frac_field(x)) == QQ.frac_field(x) assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert ZZ.poly_ring(x, y).unify( QQ.frac_field(x)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x, y).unify( ZZ.frac_field(x)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x, y).unify(QQ.frac_field(x)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x).unify(ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert ZZ.poly_ring(x).unify(QQ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x).unify(ZZ.frac_field(x, y)) == EX # QQ.frac_field(x,y) assert QQ.poly_ring(x).unify(QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert ZZ.poly_ring(x, y).unify(ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.poly_ring(x, y).unify(QQ.frac_field( x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.poly_ring(x, y).unify(ZZ.frac_field( x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.poly_ring(x, y).unify(QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert ZZ.frac_field(x).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x) assert ZZ.frac_field(x).unify(QQ.poly_ring(x)) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(ZZ.poly_ring(x)) == EX # QQ.frac_field(x) assert QQ.frac_field(x).unify(QQ.poly_ring(x)) == QQ.frac_field(x) assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x, y).unify( QQ.poly_ring(x)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify( ZZ.poly_ring(x)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x, y).unify(QQ.poly_ring(x)) == QQ.frac_field(x, y) assert ZZ.frac_field(x).unify(ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert ZZ.frac_field(x).unify(QQ.poly_ring(x, y)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x).unify(ZZ.poly_ring(x, y)) == EX # QQ.frac_field(x,y) assert QQ.frac_field(x).unify(QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert ZZ.frac_field(x, y).unify(ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert ZZ.frac_field(x, y).unify(QQ.poly_ring( x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.frac_field(x, y).unify(ZZ.poly_ring( x, z)) == EX # QQ.frac_field(x,y,z) assert QQ.frac_field(x, y).unify(QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z) alg = QQ.algebraic_field(sqrt(5)) assert alg.unify(alg[x, y]) == alg[x, y] assert alg[x, y].unify(alg) == alg[x, y] assert alg.unify(alg.frac_field(x, y)) == alg.frac_field(x, y) assert alg.frac_field(x, y).unify(alg) == alg.frac_field(x, y) ext = QQ.algebraic_field(sqrt(7)) raises(NotImplementedError, lambda: alg.unify(ext)) raises(UnificationFailed, lambda: ZZ.poly_ring(x, y).unify(ZZ, gens=(y, z))) raises(UnificationFailed, lambda: ZZ.unify(ZZ.poly_ring(x, y), gens=(y, z)))