Exemple #1
0
def gauss_laguerre(n, n_digits):
    r"""
    Computes the Gauss-Laguerre quadrature [1] points and weights.

    Parameters
    ==========

    n : the order of quadrature

    n_digits : number of significant digits of the points and weights to
               return

    Returns
    =======

    (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats

    The Gauss-Laguerre quadrature approximates the integral:

    .. math::

        \int_0^{\infty} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)

    The points `x_i` and weights `w_i` are returned as ``(x, w)`` tuple of
    lists.

    Examples
    ========

    >>> from sympy.integrals.quadrature import gauss_laguerre
    >>> x, w = gauss_laguerre(3, 5)
    >>> x
    [0.41577, 2.2943, 6.2899]
    >>> w
    [0.71109, 0.27852, 0.010389]
    >>> x, w = gauss_laguerre(6, 5)
    >>> x
    [0.22285, 1.1889, 2.9927, 5.7751, 9.8375, 15.983]
    >>> w
    [0.45896, 0.417, 0.11337, 0.010399, 0.00026102, 8.9855e-7]

    [1] http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature
    """
    x = Dummy("x")
    p  = laguerre_poly(n, x, polys=True)
    p1 = laguerre_poly(n+1, x, polys=True)
    xi = []
    w  = []
    for r in p.real_roots():
        if isinstance(r, RootOf):
            r = r.eval_rational(S(1)/10**(n_digits+2))
        xi.append(r.n(n_digits))
        w.append((r/((n+1)**2 * p1.subs(x, r)**2)).n(n_digits))
    return xi, w
def test_laguerre_poly():
    raises(ValueError, "laguerre_poly(-1, x)")

    assert laguerre_poly(1, x, polys=True) == Poly(-x + 1)

    assert laguerre_poly(0, x) == 1
    assert laguerre_poly(1, x) == -x + 1
    assert laguerre_poly(2, x) == Q(1,2)*x**2 - Q(4,2)*x + 1
    assert laguerre_poly(3, x) == -Q(1,6)*x**3 + Q(9,6)*x**2 - Q(18,6)*x + 1
    assert laguerre_poly(4, x) == Q(1,24)*x**4 - Q(16,24)*x**3 + Q(72,24)*x**2 - Q(96,24)*x + 1
    assert laguerre_poly(5, x) == -Q(1,120)*x**5 + Q(25,120)*x**4 - Q(200,120)*x**3 + Q(600,120)*x**2 - Q(600,120)*x + 1
    assert laguerre_poly(6, x) == Q(1,720)*x**6 - Q(36,720)*x**5 + Q(450,720)*x**4 - Q(2400,720)*x**3 + Q(5400,720)*x**2 - Q(4320,720)*x + 1
Exemple #3
0
def test_laguerre_poly():
    raises(ValueError, "laguerre_poly(-1, x)")

    assert laguerre_poly(1, x, polys=True) == Poly(-x + 1)

    assert laguerre_poly(0, x) == 1
    assert laguerre_poly(1, x) == -x + 1
    assert laguerre_poly(2, x) == Q(1, 2) * x**2 - Q(4, 2) * x + 1
    assert laguerre_poly(
        3, x) == -Q(1, 6) * x**3 + Q(9, 6) * x**2 - Q(18, 6) * x + 1
    assert laguerre_poly(4, x) == Q(1, 24) * x**4 - Q(16, 24) * x**3 + Q(
        72, 24) * x**2 - Q(96, 24) * x + 1
    assert laguerre_poly(5, x) == -Q(1, 120) * x**5 + Q(25, 120) * x**4 - Q(
        200, 120) * x**3 + Q(600, 120) * x**2 - Q(600, 120) * x + 1
    assert laguerre_poly(
        6, x) == Q(1, 720) * x**6 - Q(36, 720) * x**5 + Q(450, 720) * x**4 - Q(
            2400, 720) * x**3 + Q(5400, 720) * x**2 - Q(4320, 720) * x + 1
Exemple #4
0
def laguerre_l(n, alpha, x):
    """
    Returns the generalized Laguerre polynomial.

    Parameters
    ==========

    n : int
        Degree of Laguerre polynomial. Must be ``n >= 0``.

    alpha : Expr
        Arbitrary expression. For ``alpha=0`` regular Laguerre
        polynomials will be generated.

    Examples
    ========

    To construct generalized Laguerre polynomials issue::

        >>> from sympy import laguerre_l, var
        >>> var("alpha, x")
        (alpha, x)

        >>> laguerre_l(0, alpha, x)
        1
        >>> laguerre_l(1, alpha, x)
        alpha - x + 1
        >>> laguerre_l(2, alpha, x)
        alpha**2/2 + 3*alpha/2 + x**2/2 + x*(-alpha - 2) + 1

    If you set ``alpha=0``, you get regular Laguerre polynomials::

        >>> laguerre_l(1, 0, x)
        -x + 1
        >>> laguerre_l(2, 0, x)
        x**2/2 - 2*x + 1
        >>> laguerre_l(3, 0, x)
        -x**3/6 + 3*x**2/2 - 3*x + 1
        >>> laguerre_l(4, 0, x)
        x**4/24 - 2*x**3/3 + 3*x**2 - 4*x + 1

    See Also
    ========

    sympy.polys.orthopolys.laguerre_poly

    """
    return laguerre_poly(n, x, alpha)
Exemple #5
0
def laguerre_l(n, alpha, x):
    """
    Returns the generalized Laguerre polynomial.

    Parameters
    ==========

    n : int
        Degree of Laguerre polynomial. Must be ``n >= 0``.

    alpha : Expr
        Arbitrary expression. For ``alpha=0`` regular Laguerre
        polynomials will be generated.

    Examples
    ========

    To construct generalized Laguerre polynomials issue::

        >>> from sympy import laguerre_l, var
        >>> var("alpha, x")
        (alpha, x)

        >>> laguerre_l(0, alpha, x)
        1
        >>> laguerre_l(1, alpha, x)
        alpha - x + 1
        >>> laguerre_l(2, alpha, x)
        alpha**2/2 + 3*alpha/2 + x**2/2 + x*(-alpha - 2) + 1

    If you set ``alpha=0``, you get regular Laguerre polynomials::

        >>> laguerre_l(1, 0, x)
        -x + 1
        >>> laguerre_l(2, 0, x)
        x**2/2 - 2*x + 1
        >>> laguerre_l(3, 0, x)
        -x**3/6 + 3*x**2/2 - 3*x + 1
        >>> laguerre_l(4, 0, x)
        x**4/24 - 2*x**3/3 + 3*x**2 - 4*x + 1

    See Also
    ========

    sympy.polys.orthopolys.laguerre_poly

    """
    return laguerre_poly(n, x, alpha)
Exemple #6
0
def test_assoc_laguerre():
    n = Symbol("n")
    m = Symbol("m")
    alpha = Symbol("alpha")

    # generalized Laguerre polynomials:
    assert assoc_laguerre(0, alpha, x) == 1
    assert assoc_laguerre(1, alpha, x) == -x + alpha + 1
    assert assoc_laguerre(2, alpha, x).expand() == \
        (x**2/2 - (alpha + 2)*x + (alpha + 2)*(alpha + 1)/2).expand()
    assert assoc_laguerre(3, alpha, x).expand() == \
        (-x**3/6 + (alpha + 3)*x**2/2 - (alpha + 2)*(alpha + 3)*x/2 +
        (alpha + 1)*(alpha + 2)*(alpha + 3)/6).expand()

    # Test the lowest 10 polynomials with laguerre_poly, to make sure it works:
    for i in range(10):
        assert assoc_laguerre(i, 0, x).expand() == laguerre_poly(i, x)

    X = assoc_laguerre(n, m, x)
    assert isinstance(X, assoc_laguerre)

    assert assoc_laguerre(n, 0, x) == laguerre(n, x)
    assert assoc_laguerre(n, alpha, 0) == binomial(alpha + n, alpha)
    p = Symbol("p", positive=True)
    assert assoc_laguerre(p, alpha, oo) == (-1)**p * oo
    assert assoc_laguerre(p, alpha, -oo) is oo

    assert diff(assoc_laguerre(n, alpha, x), x) == \
        -assoc_laguerre(n - 1, alpha + 1, x)
    _k = Dummy('k')
    assert diff(assoc_laguerre(n, alpha, x), alpha).dummy_eq(
        Sum(assoc_laguerre(_k, alpha, x) / (-alpha + n), (_k, 0, n - 1)))

    assert conjugate(assoc_laguerre(n, alpha, x)) == \
        assoc_laguerre(n, conjugate(alpha), conjugate(x))

    assert assoc_laguerre(n, alpha, x).rewrite('polynomial').dummy_eq(
        gamma(alpha + n + 1) * Sum(
            x**_k * RisingFactorial(-n, _k) /
            (factorial(_k) * gamma(_k + alpha + 1)),
            (_k, 0, n)) / factorial(n))
    raises(ValueError, lambda: assoc_laguerre(-2.1, alpha, x))
    raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(1))
    raises(ArgumentIndexError, lambda: assoc_laguerre(n, alpha, x).fdiff(4))
Exemple #7
0
    def eval(cls, n, alpha, x):
        # L_{n}^{0}(x)  --->  L_{n}(x)
        if alpha.is_zero:
            return laguerre(n, x)

        if not n.is_Number:
            # We can evaluate for some special values of x
            if x.is_zero:
                return binomial(n + alpha, alpha)
            elif x is S.Infinity and n > 0:
                return S.NegativeOne ** n * S.Infinity
            elif x is S.NegativeInfinity and n > 0:
                return S.Infinity
        else:
            # n is a given fixed integer, evaluate into polynomial
            if n.is_negative:
                raise ValueError("The index n must be nonnegative integer (got %r)" % n)
            else:
                return laguerre_poly(n, x, alpha)
Exemple #8
0
    def eval(cls, n, alpha, x):
        # L_{n}^{0}(x)  --->  L_{n}(x)
        if alpha == S.Zero:
            return laguerre(n, x)

        if not n.is_Number:
            # We can evaluate for some special values of x
            if x == S.Zero:
                return C.binomial(n+alpha, alpha)
            elif x == S.Infinity and n > S.Zero:
                return S.NegativeOne**n * S.Infinity
            elif x == S.NegativeInfinity and n > S.Zero:
                return S.Infinity
        else:
            # n is a given fixed integer, evaluate into polynomial
            if n.is_negative:
                raise ValueError("The index n must be nonnegative integer (got %r)" % n)
            else:
                return laguerre_poly(n, x, alpha)
Exemple #9
0
 def eval(cls, n, x):
     if not n.is_Number:
         # Symbolic result L_n(x)
         # L_{n}(-x)  --->  exp(-x) * L_{-n-1}(x)
         # L_{-n}(x)  --->  exp(x) * L_{n-1}(-x)
         if n.could_extract_minus_sign():
             return C.exp(x) * laguerre(n-1, -x)
         # We can evaluate for some special values of x
         if x == S.Zero:
             return S.One
         elif x == S.NegativeInfinity:
             return S.Infinity
         elif x == S.Infinity:
             return S.NegativeOne**n * S.Infinity
     else:
         # n is a given fixed integer, evaluate into polynomial
         if n.is_negative:
             raise ValueError("The index n must be nonnegative integer (got %r)" % n)
         else:
             return laguerre_poly(n, x, 0)
Exemple #10
0
 def eval(cls, n, x):
     if not n.is_Number:
         # Symbolic result L_n(x)
         # L_{n}(-x)  --->  exp(-x) * L_{-n-1}(x)
         # L_{-n}(x)  --->  exp(x) * L_{n-1}(-x)
         if n.could_extract_minus_sign():
             return C.exp(x) * laguerre(n - 1, -x)
         # We can evaluate for some special values of x
         if x == S.Zero:
             return S.One
         elif x == S.NegativeInfinity:
             return S.Infinity
         elif x == S.Infinity:
             return S.NegativeOne**n * S.Infinity
     else:
         # n is a given fixed integer, evaluate into polynomial
         if n.is_negative:
             raise ValueError(
                 "The index n must be nonnegative integer (got %r)" % n)
         else:
             return laguerre_poly(n, x, 0)
def laguerre_l(n, alpha, x):
    """
    Returns the generalized Laguerre polynomial.

    ``n`` : ``int``
        Degree of Laguerre polynomial. Must be ``n >= 0``.

    ``alpha`` : ``Expr``
        Arbitrary expression. For ``alpha=0`` regular Laguerre
        polynomials will be generated.

    **Examples**

    To construct generalized Laguerre polynomials issue::

        >>> from sympy import laguerre_l, var
        >>> var("alpha, x")
        (alpha, x)

        >>> laguerre_l(0, alpha, x)
        1
        >>> laguerre_l(1, alpha, x)
        alpha - x + 1
        >>> laguerre_l(2, alpha, x)
        alpha**2/2 + 3*alpha/2 + x**2/2 + x*(-alpha - 2) + 1

    If you set ``alpha=0``, you get regular Laguerre polynomials::

        >>> laguerre_l(1, 0, x)
        -x + 1
        >>> laguerre_l(2, 0, x)
        x**2/2 - 2*x + 1
        >>> laguerre_l(3, 0, x)
        -x**3/6 + 3*x**2/2 - 3*x + 1
        >>> laguerre_l(4, 0, x)
        x**4/24 - 2*x**3/3 + 3*x**2 - 4*x + 1

    """
    return laguerre_poly(n, x, alpha)
def gauss_laguerre(n, n_digits):
    r"""
    Computes the Gauss-Laguerre quadrature [1]_ points and weights.

    The Gauss-Laguerre quadrature approximates the integral:

    .. math::
        \int_0^{\infty} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)


    The nodes `x_i` of an order `n` quadrature rule are the roots of `L_n`
    and the weights `w_i` are given by:

    .. math::
        w_i = \frac{x_i}{(n+1)^2 \left(L_{n+1}(x_i)\right)^2}

    Parameters
    ==========

    n : the order of quadrature

    n_digits : number of significant digits of the points and weights to return

    Returns
    =======

    (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats.
             The points `x_i` and weights `w_i` are returned as ``(x, w)``
             tuple of lists.

    Examples
    ========

    >>> from sympy.integrals.quadrature import gauss_laguerre
    >>> x, w = gauss_laguerre(3, 5)
    >>> x
    [0.41577, 2.2943, 6.2899]
    >>> w
    [0.71109, 0.27852, 0.010389]
    >>> x, w = gauss_laguerre(6, 5)
    >>> x
    [0.22285, 1.1889, 2.9927, 5.7751, 9.8375, 15.983]
    >>> w
    [0.45896, 0.417, 0.11337, 0.010399, 0.00026102, 8.9855e-7]

    See Also
    ========

    gauss_legendre, gauss_gen_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi, gauss_lobatto

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature
    .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/laguerre_rule/laguerre_rule.html
    """
    x = Dummy("x")
    p = laguerre_poly(n, x, polys=True)
    p1 = laguerre_poly(n + 1, x, polys=True)
    xi = []
    w = []
    for r in p.real_roots():
        if isinstance(r, RootOf):
            r = r.eval_rational(S(1) / 10**(n_digits + 2))
        xi.append(r.n(n_digits))
        w.append((r / ((n + 1)**2 * p1.subs(x, r)**2)).n(n_digits))
    return xi, w
def gauss_gen_laguerre(n, alpha, n_digits):
    r"""
    Computes the generalized Gauss-Laguerre quadrature [1]_ points and weights.

    The generalized Gauss-Laguerre quadrature approximates the integral:

    .. math::
        \int_{0}^\infty x^{\alpha} e^{-x} f(x)\,dx \approx
            \sum_{i=1}^n w_i f(x_i)

    The nodes `x_i` of an order `n` quadrature rule are the roots of
    `L^{\alpha}_n` and the weights `w_i` are given by:

    .. math::
        w_i = \frac{\Gamma(\alpha+n)}
                {n \Gamma(n) L^{\alpha}_{n-1}(x_i) L^{\alpha+1}_{n-1}(x_i)}

    Parameters
    ==========

    n : the order of quadrature

    alpha : the exponent of the singularity, `\alpha > -1`

    n_digits : number of significant digits of the points and weights to return

    Returns
    =======

    (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats.
             The points `x_i` and weights `w_i` are returned as ``(x, w)``
             tuple of lists.

    Examples
    ========

    >>> from sympy import S
    >>> from sympy.integrals.quadrature import gauss_gen_laguerre
    >>> x, w = gauss_gen_laguerre(3, -S.Half, 5)
    >>> x
    [0.19016, 1.7845, 5.5253]
    >>> w
    [1.4493, 0.31413, 0.00906]

    >>> x, w = gauss_gen_laguerre(4, 3*S.Half, 5)
    >>> x
    [0.97851, 2.9904, 6.3193, 11.712]
    >>> w
    [0.53087, 0.67721, 0.11895, 0.0023152]

    See Also
    ========

    gauss_legendre, gauss_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi, gauss_lobatto

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature
    .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_laguerre_rule/gen_laguerre_rule.html
    """
    x = Dummy("x")
    p = laguerre_poly(n, x, alpha=alpha, polys=True)
    p1 = laguerre_poly(n - 1, x, alpha=alpha, polys=True)
    p2 = laguerre_poly(n - 1, x, alpha=alpha + 1, polys=True)
    xi = []
    w = []
    for r in p.real_roots():
        if isinstance(r, RootOf):
            r = r.eval_rational(S(1) / 10**(n_digits + 2))
        xi.append(r.n(n_digits))
        w.append((gamma(alpha + n) /
                  (n * gamma(n) * p1.subs(x, r) * p2.subs(x, r))).n(n_digits))
    return xi, w
Exemple #14
0
def test_laguerre_poly():
    raises(ValueError, lambda: laguerre_poly(-1, x))

    assert laguerre_poly(1, x, polys=True) == Poly(-x + 1)

    assert laguerre_poly(0, x) == 1
    assert laguerre_poly(1, x) == -x + 1
    assert laguerre_poly(2, x) == Q(1, 2) * x**2 - Q(4, 2) * x + 1
    assert laguerre_poly(
        3, x) == -Q(1, 6) * x**3 + Q(9, 6) * x**2 - Q(18, 6) * x + 1
    assert laguerre_poly(4, x) == Q(1, 24) * x**4 - Q(16, 24) * x**3 + Q(
        72, 24) * x**2 - Q(96, 24) * x + 1
    assert laguerre_poly(5, x) == -Q(1, 120) * x**5 + Q(25, 120) * x**4 - Q(
        200, 120) * x**3 + Q(600, 120) * x**2 - Q(600, 120) * x + 1
    assert laguerre_poly(
        6, x) == Q(1, 720) * x**6 - Q(36, 720) * x**5 + Q(450, 720) * x**4 - Q(
            2400, 720) * x**3 + Q(5400, 720) * x**2 - Q(4320, 720) * x + 1

    assert laguerre_poly(0, x, a) == 1
    assert laguerre_poly(1, x, a) == -x + a + 1
    assert laguerre_poly(
        2, x, a) == x**2 / 2 + (-a - 2) * x + a**2 / 2 + a * Q(3, 2) + 1
    assert laguerre_poly(3, x, a) == -x**3 / 6 + (a / 2 + Q(3) / 2) * x**2 + (
        -a**2 / 2 - a * Q(5, 2) - 3) * x + a**3 / 6 + a**2 + a * Q(11, 6) + 1

    assert laguerre_poly(1).dummy_eq(-x + 1)
    assert laguerre_poly(1, polys=True) == Poly(-x + 1)
Exemple #15
0
hermite_poly(2, x) == HermiteP.subs(n, 2).doit()  # True
hermite_poly(3, x) == HermiteP.subs(n, 3).doit()  # True
hermite_poly(4, x) == HermiteP.subs(n, 4).doit()  # True

(HermiteF.subs(n, n + 1) / HermiteF).simplify()  # 2*x*(n + 1)/(-2*k + n + 1)
(HermiteF.subs(k, k + 1) / HermiteF).simplify()  # -(2*k - n)*(2*k - n + 1)/(4*x**2*(k + 1))

LaguerreF = binomial(n + alpha, n - k) * (-x) ** k / factorial(k)
LaguerreP = Sum(LaguerreF, (k, 0, n))

for alphavar in range(4):
    for nvar in range(4):
        print alphavar, nvar, LaguerreP.subs(n, nvar).subs(alpha, alphavar).doit(), LaguerreP.subs(n, nvar).subs(
            alpha, alphavar
        ).doit() == laguerre_poly(
            nvar, x, alpha=alphavar
        )  # True

(LaguerreF.subs(n, n + 1) / LaguerreF).simplify()  # (alpha + n + 1)/(-k + n + 1)
(LaguerreF.subs(k, k + 1) / LaguerreF).simplify()  # x*(k - n)/((k + 1)*(alpha + k + 1))

LegendreF = Rat(1) / (Rat(2) ** n) * (binomial(n, k)) ** 2 * (x - Rat(1)) ** k * (x + Rat(1)) ** (n - k)
LegendreP = Sum(LegendreF, (k, 0, n))

for nvar in range(4):
    legendre_poly(nvar, x) == LegendreP.subs(n, nvar).doit().expand()  # True

(LegendreF.subs(n, n + 1) / LegendreF).simplify()  # (n + 1)**2*(x + 1)/(2*(k - n - 1)**2)
(LegendreF.subs(k, k + 1) / LegendreF).simplify()  # (k - n)**2*(x - 1)/((k + 1)**2*(x + 1))

JacobiF = (
Exemple #16
0
def test_laguerre_poly():
    raises(ValueError, lambda: laguerre_poly(-1, x))

    assert laguerre_poly(1, x, polys=True) == Poly(-x + 1)

    assert laguerre_poly(0, x) == 1
    assert laguerre_poly(1, x) == -x + 1
    assert laguerre_poly(2, x) == Q(1,2)*x**2 - Q(4,2)*x + 1
    assert laguerre_poly(3, x) == -Q(1,6)*x**3 + Q(9,6)*x**2 - Q(18,6)*x + 1
    assert laguerre_poly(4, x) == Q(1,24)*x**4 - Q(16,24)*x**3 + Q(72,24)*x**2 - Q(96,24)*x + 1
    assert laguerre_poly(5, x) == -Q(1,120)*x**5 + Q(25,120)*x**4 - Q(200,120)*x**3 + Q(600,120)*x**2 - Q(600,120)*x + 1
    assert laguerre_poly(6, x) == Q(1,720)*x**6 - Q(36,720)*x**5 + Q(450,720)*x**4 - Q(2400,720)*x**3 + Q(5400,720)*x**2 - Q(4320,720)*x + 1

    assert laguerre_poly(0, x, a) == 1
    assert laguerre_poly(1, x, a) == -x + a + 1
    assert laguerre_poly(2, x, a) == x**2/2 + (-a - 2)*x + a**2/2 + 3*a/2 + 1
    assert laguerre_poly(3, x, a) == -x**3/6 + (a/2 + Q(3)/2)*x**2 + (-a**2/2 - 5*a/2 - 3)*x + a**3/6 + a**2 + 11*a/6 + 1

    assert laguerre_poly(1).dummy_eq(-x + 1)
    assert laguerre_poly(1, polys=True) == Poly(-x + 1)
Exemple #17
0
def gauss_gen_laguerre(n, alpha, n_digits):
    r"""
    Computes the generalized Gauss-Laguerre quadrature [1]_ points and weights.

    The generalized Gauss-Laguerre quadrature approximates the integral:

    .. math::
        \int_{0}^\infty x^{\alpha} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)

    The nodes `x_i` of an order `n` quadrature rule are the roots of `L^{\alpha}_n`
    and the weights `w_i` are given by:

    .. math::
        w_i = \frac{\Gamma(\alpha+n)}{n \Gamma(n) L^{\alpha}_{n-1}(x_i) L^{\alpha+1}_{n-1}(x_i)}

    Parameters
    ==========

    n : the order of quadrature

    alpha : the exponent of the singularity, `\alpha > -1`

    n_digits : number of significant digits of the points and weights to return

    Returns
    =======

    (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats.
             The points `x_i` and weights `w_i` are returned as ``(x, w)``
             tuple of lists.

    Examples
    ========

    >>> from sympy import S
    >>> from sympy.integrals.quadrature import gauss_gen_laguerre
    >>> x, w = gauss_gen_laguerre(3, -S.Half, 5)
    >>> x
    [0.19016, 1.7845, 5.5253]
    >>> w
    [1.4493, 0.31413, 0.00906]

    >>> x, w = gauss_gen_laguerre(4, 3*S.Half, 5)
    >>> x
    [0.97851, 2.9904, 6.3193, 11.712]
    >>> w
    [0.53087, 0.67721, 0.11895, 0.0023152]

    See Also
    ========

    gauss_legendre, gauss_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature
    .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_laguerre_rule/gen_laguerre_rule.html
    """
    x = Dummy("x")
    p = laguerre_poly(n, x, alpha=alpha, polys=True)
    p1 = laguerre_poly(n-1, x, alpha=alpha, polys=True)
    p2 = laguerre_poly(n-1, x, alpha=alpha+1, polys=True)
    xi = []
    w  = []
    for r in p.real_roots():
        if isinstance(r, RootOf):
            r = r.eval_rational(S(1)/10**(n_digits+2))
        xi.append(r.n(n_digits))
        w.append((gamma(alpha+n)/(n*gamma(n)*p1.subs(x, r)*p2.subs(x, r))).n(n_digits))
    return xi, w
Exemple #18
0
def gauss_laguerre(n, n_digits):
    r"""
    Computes the Gauss-Laguerre quadrature [1]_ points and weights.

    The Gauss-Laguerre quadrature approximates the integral:

    .. math::
        \int_0^{\infty} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i)


    The nodes `x_i` of an order `n` quadrature rule are the roots of `L_n`
    and the weights `w_i` are given by:

    .. math::
        w_i = \frac{x_i}{(n+1)^2 \left(L_{n+1}(x_i)\right)^2}

    Parameters
    ==========

    n : the order of quadrature

    n_digits : number of significant digits of the points and weights to return

    Returns
    =======

    (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats.
             The points `x_i` and weights `w_i` are returned as ``(x, w)``
             tuple of lists.

    Examples
    ========

    >>> from sympy.integrals.quadrature import gauss_laguerre
    >>> x, w = gauss_laguerre(3, 5)
    >>> x
    [0.41577, 2.2943, 6.2899]
    >>> w
    [0.71109, 0.27852, 0.010389]
    >>> x, w = gauss_laguerre(6, 5)
    >>> x
    [0.22285, 1.1889, 2.9927, 5.7751, 9.8375, 15.983]
    >>> w
    [0.45896, 0.417, 0.11337, 0.010399, 0.00026102, 8.9855e-7]

    See Also
    ========

    gauss_legendre, gauss_gen_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature
    .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/laguerre_rule/laguerre_rule.html
    """
    x = Dummy("x")
    p  = laguerre_poly(n, x, polys=True)
    p1 = laguerre_poly(n+1, x, polys=True)
    xi = []
    w  = []
    for r in p.real_roots():
        if isinstance(r, RootOf):
            r = r.eval_rational(S(1)/10**(n_digits+2))
        xi.append(r.n(n_digits))
        w.append((r/((n+1)**2 * p1.subs(x, r)**2)).n(n_digits))
    return xi, w