Exemple #1
0
def test_smith_normal():
    m = Matrix([[12, 6, 4, 8], [3, 9, 6, 12], [2, 16, 14, 28],
                [20, 10, 10, 20]])
    setattr(m, 'ring', ZZ)
    smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]])
    assert smith_normal_form(m) == smf

    x = Symbol('x')
    m = Matrix([[Poly(x - 1), Poly(1, x), Poly(-1, x)],
                [0, Poly(x), Poly(-1, x)], [Poly(0, x),
                                            Poly(-1, x),
                                            Poly(x)]])
    setattr(m, 'ring', QQ[x])
    invs = (Poly(1, x), Poly(x - 1), Poly(x**2 - 1))
    assert invariant_factors(m) == invs
Exemple #2
0
    def _is_infinite(self):
        """
        Test if the group is infinite. Return `True` if the test succeeds
        and `None` otherwise

        """
        used_gens = set()
        for r in self.relators:
            used_gens.update(r.contains_generators())
        if any([g not in used_gens for g in self.generators]):
            return True
        # Abelianisation test: check is the abelianisation is infinite
        abelian_rels = []
        from sympy.polys.solvers import RawMatrix as Matrix
        from sympy.polys.domains import ZZ
        from sympy.matrices.normalforms import invariant_factors

        for rel in self.relators:
            abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
        m = Matrix(abelian_rels)
        setattr(m, "ring", ZZ)
        if 0 in invariant_factors(m):
            return True
        else:
            return None