def test_Sum():
    assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]"
    assert mcode(Sum(exp(-x**2 - y**2),
                     (x, -oo, oo),
                     (y, -oo, oo))) == \
        "Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
        "{y, -Infinity, Infinity}]]"
def test_Pow():
    assert mcode(x**3) == "x^3"
    assert mcode(x**(y**3)) == "x^(y^3)"
    assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \
        "(3.5*f[x])^(-x + y^x)/(x^2 + y)"
    assert mcode(x**-1.0) == 'x^(-1.0)'
    assert mcode(x**Rational(2, 3)) == 'x^(2/3)'
def test_matrices():
    from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \
        ImmutableDenseMatrix, ImmutableSparseMatrix
    A = MutableDenseMatrix(
        [[1, -1, 0, 0],
         [0, 1, -1, 0],
         [0, 0, 1, -1],
         [0, 0, 0, 1]]
    )
    B = MutableSparseMatrix(A)
    C = ImmutableDenseMatrix(A)
    D = ImmutableSparseMatrix(A)

    assert mcode(C) == mcode(A) == \
        "{{1, -1, 0, 0}, " \
        "{0, 1, -1, 0}, " \
        "{0, 0, 1, -1}, " \
        "{0, 0, 0, 1}}"

    assert mcode(D) == mcode(B) == \
        "SparseArray[{" \
        "{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \
        "{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \
        "}, {4, 4}]"

    # Trivial cases of matrices
    assert mcode(MutableDenseMatrix(0, 0, [])) == '{}'
    assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]'
    assert mcode(MutableDenseMatrix(0, 3, [])) == '{}'
    assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]'
    assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}'
    assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]'
def test_Integral():
    assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]"
    assert mcode(Integral(exp(-x**2 - y**2),
                          (x, -oo, oo),
                          (y, -oo, oo))) == \
        "Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
        "{y, -Infinity, Infinity}]]"
def test_containers():
    assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
        "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
    assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
    assert mcode([1]) == "{1}"
    assert mcode((1,)) == "{1}"
    assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
def test_Mul():
    A, B, C, D = symbols('A B C D', commutative=False)
    assert mcode(x*y*z) == "x*y*z"
    assert mcode(x*y*A) == "x*y*A"
    assert mcode(x*y*A*B) == "x*y*A**B"
    assert mcode(x*y*A*B*C) == "x*y*A**B**C"
    assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A"
def test_NDArray():
    from sympy.tensor.array import (
        MutableDenseNDimArray, ImmutableDenseNDimArray,
        MutableSparseNDimArray, ImmutableSparseNDimArray)

    example = MutableDenseNDimArray(
        [[[1, 2, 3, 4],
          [5, 6, 7, 8],
          [9, 10, 11, 12]],
         [[13, 14, 15, 16],
          [17, 18, 19, 20],
          [21, 22, 23, 24]]]
    )

    assert mcode(example) == \
    "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
    "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"

    example = ImmutableDenseNDimArray(example)

    assert mcode(example) == \
    "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
    "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"

    example = MutableSparseNDimArray(example)

    assert mcode(example) == \
    "SparseArray[{" \
        "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
        "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
        "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
        "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
        "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
        "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
        "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
        "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
        "}, {2, 3, 4}]"

    example = ImmutableSparseNDimArray(example)

    assert mcode(example) == \
    "SparseArray[{" \
        "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
        "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
        "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
        "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
        "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
        "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
        "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
        "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
        "}, {2, 3, 4}]"
def test_special_polynomials():
    assert mcode(hermite(x, y)) == "HermiteH[x, y]"
    assert mcode(laguerre(x, y)) == "LaguerreL[x, y]"
    assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]"
    assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]"
    assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]"
    assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]"
    assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]"
    assert mcode(legendre(x, y)) == "LegendreP[x, y]"
    assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]"
def test_userfuncs():
    # Dictionary mutation test
    some_function = symbols("some_function", cls=Function)
    my_user_functions = {"some_function": "SomeFunction"}
    assert mcode(
        some_function(z),
        user_functions=my_user_functions) == \
        'SomeFunction[z]'
    assert mcode(
        some_function(z),
        user_functions=my_user_functions) == \
        'SomeFunction[z]'

    # List argument test
    my_user_functions = \
        {"some_function": [(lambda x: True, "SomeOtherFunction")]}
    assert mcode(
        some_function(z),
        user_functions=my_user_functions) == \
        'SomeOtherFunction[z]'
def test_Relational():
    assert mcode(Eq(x, y)) == "x == y"
    assert mcode(Ne(x, y)) == "x != y"
    assert mcode(Le(x, y)) == "x <= y"
    assert mcode(Lt(x, y)) == "x < y"
    assert mcode(Gt(x, y)) == "x > y"
    assert mcode(Ge(x, y)) == "x >= y"
def test_Rational():
    assert mcode(Rational(3, 7)) == "3/7"
    assert mcode(Rational(18, 9)) == "2"
    assert mcode(Rational(3, -7)) == "-3/7"
    assert mcode(Rational(-3, -7)) == "3/7"
    assert mcode(x + Rational(3, 7)) == "x + 3/7"
    assert mcode(Rational(3, 7)*x) == "(3/7)*x"
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]"
    assert mcode(atan2(x, y)) == "ArcTan[x, y]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
    assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]"
    assert mcode(fresnelc(x)) == "FresnelC[x]"
    assert mcode(fresnels(x)) == "FresnelS[x]"
    assert mcode(gamma(x)) == "Gamma[x]"
    assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
    assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
    assert mcode(loggamma(x)) == "LogGamma[x]"
    assert mcode(erf(x)) == "Erf[x]"
    assert mcode(erfc(x)) == "Erfc[x]"
    assert mcode(erfi(x)) == "Erfi[x]"
    assert mcode(erf2(x, y)) == "Erf[x, y]"
    assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
    assert mcode(erfcinv(x)) == "InverseErfc[x]"
    assert mcode(erfinv(x)) == "InverseErf[x]"
    assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
    assert mcode(Ei(x)) == "ExpIntegralEi[x]"
    assert mcode(Ci(x)) == "CosIntegral[x]"
    assert mcode(li(x)) == "LogIntegral[x]"
    assert mcode(Si(x)) == "SinIntegral[x]"
    assert mcode(Shi(x)) == "SinhIntegral[x]"
    assert mcode(Chi(x)) == "CoshIntegral[x]"
    assert mcode(beta(x, y)) == "Beta[x, y]"
    assert mcode(factorial(x)) == "Factorial[x]"
    assert mcode(factorial2(x)) == "Factorial2[x]"
    assert mcode(subfactorial(x)) == "Subfactorial[x]"
    assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
    assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
    assert mcode(catalan(x)) == "CatalanNumber[x]"
    assert mcode(harmonic(x)) == "HarmonicNumber[x]"
    assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
    assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]"
    assert mcode(LambertW(x)) == "ProductLog[x]"
    assert mcode(LambertW(x, -1)) == "ProductLog[-1, x]"
    assert mcode(LambertW(x, y)) == "ProductLog[y, x]"
def test_Derivative():
    assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]"
    assert mcode(Derivative(x, x)) == "Hold[D[x, x]]"
    assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]"
    assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]"
    assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]"
def test_Integer():
    assert mcode(Integer(67)) == "67"
    assert mcode(Integer(-1)) == "-1"
def test_constants():
    assert mcode(S.Zero) == "0"
    assert mcode(S.One) == "1"
    assert mcode(S.NegativeOne) == "-1"
    assert mcode(S.Half) == "1/2"
    assert mcode(S.ImaginaryUnit) == "I"

    assert mcode(oo) == "Infinity"
    assert mcode(S.NegativeInfinity) == "-Infinity"
    assert mcode(S.ComplexInfinity) == "ComplexInfinity"
    assert mcode(S.NaN) == "Indeterminate"

    assert mcode(S.Exp1) == "E"
    assert mcode(pi) == "Pi"
    assert mcode(S.GoldenRatio) == "GoldenRatio"
    assert mcode(S.TribonacciConstant) == \
        "(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
        "(1/3)*(3*33^(1/2) + 19)^(1/3))"
    assert mcode(2*S.TribonacciConstant) == \
        "2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
        "(1/3)*(3*33^(1/2) + 19)^(1/3))"
    assert mcode(S.EulerGamma) == "EulerGamma"
    assert mcode(S.Catalan) == "Catalan"