def _sqrtdenest_rec(expr): """Helper that denests the square root of three or more surds. It returns the denested expression; if it cannot be denested it throws SqrtdenestStopIteration Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k)); split expr.base = a + b*sqrt(r_k), where `a` and `b` are on Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on. See [1], section 6. Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec >>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498)) -sqrt(10) + sqrt(2) + 9 + 9*sqrt(5) >>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65 >>> _sqrtdenest_rec(sqrt(w)) -sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5) """ from sympy.simplify.simplify import radsimp, split_surds, rad_rationalize if not expr.is_Pow: return sqrtdenest(expr) if expr.base < 0: return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base)) g, a, b = split_surds(expr.base) a = a*sqrt(g) if a < b: a, b = b, a c2 = _mexpand(a**2 - b**2) if len(c2.args) > 2: g, a1, b1 = split_surds(c2) a1 = a1*sqrt(g) if a1 < b1: a1, b1 = b1, a1 c2_1 = _mexpand(a1**2 - b1**2) c_1 = _sqrtdenest_rec(sqrt(c2_1)) d_1 = _sqrtdenest_rec(sqrt(a1 + c_1)) num, den = rad_rationalize(b1, d_1) c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2))) else: c = _sqrtdenest1(sqrt(c2)) if sqrt_depth(c) > 1: raise SqrtdenestStopIteration ac = a + c if len(ac.args) >= len(expr.args): if count_ops(ac) >= count_ops(expr.base): raise SqrtdenestStopIteration d = sqrtdenest(sqrt(ac)) if sqrt_depth(d) > 1: raise SqrtdenestStopIteration num, den = rad_rationalize(b, d) r = d/sqrt(2) + num/(den*sqrt(2)) r = radsimp(r) return _mexpand(r)
def length(P, Q, D): """ Returns the length of aperiodic part + length of periodic part of continued fraction representation of (P + sqrt(D))/Q. It is important to remember that this does NOT return the length of the periodic part but the addition of the legths of the two parts as mentioned above. Usage ===== length(P, Q, D) -> P, Q and D are integers corresponding to the continued fraction (P + sqrt(D))/Q. Details ======= ``P`` corresponds to the P in the continued fraction, (P + sqrt(D))/ Q ``D`` corresponds to the D in the continued fraction, (P + sqrt(D))/ Q ``Q`` corresponds to the Q in the continued fraction, (P + sqrt(D))/ Q Examples ======== >>> from sympy.solvers.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 """ x = P + sqrt(D) y = Q x = sympify(x) v, res = [], [] q = x / y if q < 0: v.append(q) res.append(floor(q)) q = q - floor(q) num, den = rad_rationalize(1, q) q = num / den while 1: v.append(q) a = int(q) res.append(a) if q == a: return len(res) num, den = rad_rationalize(1, (q - a)) q = num / den if q in v: return len(res)
def length(P, Q, D): """ Returns the length of aperiodic part + length of periodic part of continued fraction representation of (P + sqrt(D))/Q. It is important to remember that this does NOT return the length of the periodic part but the addition of the legths of the two parts as mentioned above. Usage ===== length(P, Q, D) -> P, Q and D are integers corresponding to the continued fraction (P + sqrt(D))/Q. Details ======= ``P`` corresponds to the P in the continued fraction, (P + sqrt(D))/ Q ``D`` corresponds to the D in the continued fraction, (P + sqrt(D))/ Q ``Q`` corresponds to the Q in the continued fraction, (P + sqrt(D))/ Q Examples ======== >>> from sympy.solvers.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 """ x = P + sqrt(D) y = Q x = sympify(x) v, res = [], [] q = x/y if q < 0: v.append(q) res.append(floor(q)) q = q - floor(q) num, den = rad_rationalize(1, q) q = num / den while 1: v.append(q) a = int(q) res.append(a) if q == a: return len(res) num, den = rad_rationalize(1,(q - a)) q = num / den if q in v: return len(res)
def sqrt_biquadratic_denest(expr, a, b, r, d2): """denest expr = sqrt(a + b*sqrt(r)) where a, b, r are linear combinations of square roots of positive rationals on the rationals (SQRR) and r > 0, b != 0, d2 = a**2 - b**2*r > 0 If it cannot denest it returns None. ALGORITHM Search for a solution A of type SQRR of the biquadratic equation 4*A**4 - 4*a*A**2 + b**2*r = 0 (1) sqd = sqrt(a**2 - b**2*r) Choosing the sqrt to be positive, the possible solutions are A = sqrt(a/2 +/- sqd/2) Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR, so if sqd can be denested, it is done by _sqrtdenest_rec, and the result is a SQRR. Similarly for A. Examples of solutions (in both cases a and sqd are positive): Example of expr with solution sqrt(a/2 + sqd/2) but not solution sqrt(a/2 - sqd/2): expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8) a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3) Example of expr with solution sqrt(a/2 - sqd/2) but not solution sqrt(a/2 + sqd/2): w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3) expr = sqrt((w**2).expand()) a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3) sqd = 29 + 20*sqrt(3) Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2 Examples ======== >>> from sympy import sqrt >>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest >>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8) >>> a, b, r = _sqrt_match(z**2) >>> d2 = a**2 - b**2*r >>> sqrt_biquadratic_denest(z, a, b, r, d2) sqrt(2) + sqrt(sqrt(2) + 2) + 2 """ from sympy.simplify.simplify import radsimp, rad_rationalize if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2: return None for x in (a, b, r): for y in x.args: y2 = y**2 if not y2.is_Integer or not y2.is_positive: return None sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2)))) if sqrt_depth(sqd) > 1: return None x1, x2 = [a/2 + sqd/2, a/2 - sqd/2] # look for a solution A with depth 1 for x in (x1, x2): A = sqrtdenest(sqrt(x)) if sqrt_depth(A) > 1: continue Bn, Bd = rad_rationalize(b, _mexpand(2*A)) B = Bn/Bd z = A + B*sqrt(r) if z < 0: z = -z return _mexpand(z) return None