def rv(symbol, cls, *args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) pspace = SingleDiscretePSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value
def rv(name, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleFinitePSpace(name, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(name, CompoundDistribution(dist)) return pspace.value
def test_compound_pspace(): X = Normal('X', 2, 4) Y = Normal('Y', 3, 6) assert not isinstance(Y.pspace, CompoundPSpace) N = NormalDistribution(1, 2) D = PoissonDistribution(3) B = BernoulliDistribution(0.2, 1, 0) pspace1 = CompoundPSpace('N', N) pspace2 = CompoundPSpace('D', D) pspace3 = CompoundPSpace('B', B) assert not isinstance(pspace1, CompoundPSpace) assert not isinstance(pspace2, CompoundPSpace) assert not isinstance(pspace3, CompoundPSpace) M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]]) raises(ValueError, lambda: CompoundPSpace('M', M)) Y = Normal('Y', X, 6) assert isinstance(Y.pspace, CompoundPSpace) assert Y.pspace.distribution == CompoundDistribution(NormalDistribution(X, 6)) assert Y.pspace.domain.set == Interval(-oo, oo)
def test_Compound_Distribution(): X = Normal('X', 2, 4) N = NormalDistribution(X, 4) C = CompoundDistribution(N) assert C.is_Continuous assert C.set == Interval(-oo, oo) assert C.pdf(x, evaluate=True).simplify() == exp(-x**2/64 + x/16 - S(1)/16)/(8*sqrt(pi)) assert not isinstance(CompoundDistribution(NormalDistribution(2, 3)), CompoundDistribution) M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]]) raises(NotImplementedError, lambda: CompoundDistribution(M)) X = Beta('X', 2, 4) B = BernoulliDistribution(X, 1, 0) C = CompoundDistribution(B) assert C.is_Finite assert C.set == {0, 1} y = symbols('y', negative=False, integer=True) assert C.pdf(y, evaluate=True) == Piecewise((S(1)/(30*beta(2, 4)), Eq(y, 0)), (S(1)/(60*beta(2, 4)), Eq(y, 1)), (0, True)) k, t, z = symbols('k t z', positive=True, real=True) G = Gamma('G', k, t) X = PoissonDistribution(G) C = CompoundDistribution(X) assert C.is_Discrete assert C.set == S.Naturals0 assert C.pdf(z, evaluate=True).simplify() == t**z*(t + 1)**(-k - z)*gamma(k \ + z)/(gamma(k)*gamma(z + 1))