Exemple #1
0
def test_array_symbol_and_element():
    A = ArraySymbol("A", (2, ))
    A0 = ArrayElement(A, (0, ))
    A1 = ArrayElement(A, (1, ))
    assert A[0] == A0
    assert A[1] != A0
    assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])

    A2 = tensorproduct(A, A)
    assert A2.shape == (2, 2)
    # TODO: not yet supported:
    # assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
    A3 = tensorcontraction(A2, (0, 1))
    assert A3.shape == ()
    # TODO: not yet supported:
    # assert A3.as_explicit() == Array([])

    A = ArraySymbol("A", (2, 3, 4))
    Ae = A.as_explicit()
    assert Ae == ImmutableDenseNDimArray(
        [[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)]
         for i in range(2)])

    p = _permute_dims(A, Permutation(0, 2, 1))
    assert isinstance(p, PermuteDims)
def test_convert_array_element_to_matrix():

    expr = ArrayElement(M, (i, j))
    assert convert_array_to_matrix(expr) == MatrixElement(M, i, j)

    expr = ArrayElement(_array_contraction(_array_tensor_product(M, N), (1, 3)), (i, j))
    assert convert_array_to_matrix(expr) == MatrixElement(M*N.T, i, j)

    expr = ArrayElement(_array_tensor_product(M, N), (i, j, m, n))
    assert convert_array_to_matrix(expr) == expr
Exemple #3
0
def test_arrayexpr_convert_indexed_to_array_and_back_to_matrix():

    expr = a.T * b
    elem = expr[0, 0]
    cg = convert_indexed_to_array(elem)
    assert cg == ArrayElement(
        ArrayContraction(ArrayTensorProduct(a, b), (0, 2)), [0, 0])

    expr = M[i, j] + N[i, j]
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(p1) == M + N

    expr = M[i, j] + N[j, i]
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(p1) == M + N.T

    expr = M[i, j] * N[k, l] + N[i, j] * M[k, l]
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(p1) == ArrayAdd(ArrayTensorProduct(M, N),
                                                   ArrayTensorProduct(N, M))

    expr = (M * N * P)[i, j]
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(p1) == M * N * P

    expr = Sum(M[i, j] * (N * P)[j, m], (j, 0, k - 1))
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(p1) == M * N * P

    expr = Sum((P[j, m] + P[m, j]) * (M[i, j] * N[m, n] + N[i, j] * M[m, n]),
               (j, 0, k - 1), (m, 0, k - 1))
    p1, p2 = _convert_indexed_to_array(expr)
    assert convert_array_to_matrix(
        p1) == M * P * N + M * P.T * N + N * P * M + N * P.T * M
def test_array_symbol_and_element():
    A = ArraySymbol("A", (2,))
    A0 = ArrayElement(A, (0,))
    A1 = ArrayElement(A, (1,))
    assert A[0] == A0
    assert A[1] != A0
    assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])

    A2 = tensorproduct(A, A)
    assert A2.shape == (2, 2)
    # TODO: not yet supported:
    # assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
    A3 = tensorcontraction(A2, (0, 1))
    assert A3.shape == ()
    # TODO: not yet supported:
    # assert A3.as_explicit() == Array([])

    A = ArraySymbol("A", (2, 3, 4))
    Ae = A.as_explicit()
    assert Ae == ImmutableDenseNDimArray(
        [[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)])

    p = _permute_dims(A, Permutation(0, 2, 1))
    assert isinstance(p, PermuteDims)

    A = ArraySymbol("A", (2,))
    raises(IndexError, lambda: A[()])
    raises(IndexError, lambda: A[0, 1])
    raises(ValueError, lambda: A[-1])
    raises(ValueError, lambda: A[2])

    O = OneArray(3, 4)
    Z = ZeroArray(m, n)

    raises(IndexError, lambda: O[()])
    raises(IndexError, lambda: O[1, 2, 3])
    raises(ValueError, lambda: O[3, 0])
    raises(ValueError, lambda: O[0, 4])

    assert O[1, 2] == 1
    assert Z[1, 2] == 0
Exemple #5
0
def test_printing_str_array_expressions():
    assert sstr(ArraySymbol("A", 2, 3, 4)) == "A"
    assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]"
Exemple #6
0
def convert_indexed_to_array(expr, first_indices=None):
    r"""
    Parse indexed expression into a form useful for code generation.

    Examples
    ========

    >>> from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array
    >>> from sympy import MatrixSymbol, Sum, symbols

    >>> i, j, k, d = symbols("i j k d")
    >>> M = MatrixSymbol("M", d, d)
    >>> N = MatrixSymbol("N", d, d)

    Recognize the trace in summation form:

    >>> expr = Sum(M[i, i], (i, 0, d-1))
    >>> convert_indexed_to_array(expr)
    ArrayContraction(M, (0, 1))

    Recognize the extraction of the diagonal by using the same index `i` on
    both axes of the matrix:

    >>> expr = M[i, i]
    >>> convert_indexed_to_array(expr)
    ArrayDiagonal(M, (0, 1))

    This function can help perform the transformation expressed in two
    different mathematical notations as:

    `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`

    Recognize the matrix multiplication in summation form:

    >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1))
    >>> convert_indexed_to_array(expr)
    ArrayContraction(ArrayTensorProduct(M, N), (1, 2))

    Specify that ``k`` has to be the starting index:

    >>> convert_indexed_to_array(expr, first_indices=[k])
    ArrayContraction(ArrayTensorProduct(N, M), (0, 3))
    """

    result, indices = _convert_indexed_to_array(expr)

    if any(isinstance(i, (int, Integer)) for i in indices):
        result = ArrayElement(result, indices)
        indices = []

    if not first_indices:
        return result

    def _check_is_in(elem, indices):
        if elem in indices:
            return True
        if any(elem in i for i in indices if isinstance(i, frozenset)):
            return True
        return False

    repl = {j: i for i in indices if isinstance(i, frozenset) for j in i}
    first_indices = [repl.get(i, i) for i in first_indices]
    for i in first_indices:
        if not _check_is_in(i, indices):
            first_indices.remove(i)
    first_indices.extend(
        [i for i in indices if not _check_is_in(i, first_indices)])

    def _get_pos(elem, indices):
        if elem in indices:
            return indices.index(elem)
        for i, e in enumerate(indices):
            if not isinstance(e, frozenset):
                continue
            if elem in e:
                return i
        raise ValueError("not found")

    permutation = _af_invert([_get_pos(i, first_indices) for i in indices])
    if isinstance(result, ArrayAdd):
        return _array_add(
            *[_permute_dims(arg, permutation) for arg in result.args])
    else:
        return _permute_dims(result, permutation)
Exemple #7
0
def test_printing_str_array_expressions():
    assert sstr(ArraySymbol("A", (2, 3, 4))) == "A"
    assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]"
    M = MatrixSymbol("M", 3, 3)
    N = MatrixSymbol("N", 3, 3)
    assert sstr(ArrayElement(M*N, [x, 0])) == "(M*N)[x, 0]"
def _(expr: ArrayElement):
    ret = _array2matrix(expr.name)
    if isinstance(ret, MatrixExpr):
        return MatrixElement(ret, *expr.indices)
    return ArrayElement(ret, expr.indices)