Exemple #1
0
    def shape(self):
        """Returns a list with dimensions of each index.

        Dimensions is a property of the array, not of the indices.  Still, if
        the ``IndexedBase`` does not define a shape attribute, it is assumed
        that the ranges of the indices correspond to the shape of the array.

        >>> from sympy import IndexedBase, Idx, symbols
        >>> n, m = symbols('n m', integer=True)
        >>> i = Idx('i', m)
        >>> j = Idx('j', m)
        >>> A = IndexedBase('A', shape=(n, n))
        >>> B = IndexedBase('B')
        >>> A[i, j].shape
        (n, n)
        >>> B[i, j].shape
        (m, m)
        """
        from sympy.utilities.misc import filldedent

        if self.base.shape:
            return self.base.shape
        try:
            return Tuple(*[i.upper - i.lower + 1 for i in self.indices])
        except AttributeError:
            raise IndexException(filldedent("""
                Range is not defined for all indices in: %s""" % self))
        except TypeError:
            raise IndexException(filldedent("""
                Shape cannot be inferred from Idx with
                undefined range: %s""" % self))
Exemple #2
0
 def __getitem__(self, key):
     if not isinstance(key, tuple) and isinstance(key, slice):
         from sympy.matrices.expressions.slice import MatrixSlice
         return MatrixSlice(self, key, (0, None, 1))
     if isinstance(key, tuple) and len(key) == 2:
         i, j = key
         if isinstance(i, slice) or isinstance(j, slice):
             from sympy.matrices.expressions.slice import MatrixSlice
             return MatrixSlice(self, i, j)
         i, j = sympify(i), sympify(j)
         if self.valid_index(i, j) != False:
             return self._entry(i, j)
         else:
             raise IndexError("Invalid indices (%s, %s)" % (i, j))
     elif isinstance(key, (SYMPY_INTS, Integer)):
         # row-wise decomposition of matrix
         rows, cols = self.shape
         # allow single indexing if number of columns is known
         if not isinstance(cols, Integer):
             raise IndexError(filldedent('''
                 Single indexing is only supported when the number
                 of columns is known.'''))
         key = sympify(key)
         i = key // cols
         j = key % cols
         if self.valid_index(i, j) != False:
             return self._entry(i, j)
         else:
             raise IndexError("Invalid index %s" % key)
     elif isinstance(key, (Symbol, Expr)):
             raise IndexError(filldedent('''
                 Only integers may be used when addressing the matrix
                 with a single index.'''))
     raise IndexError("Invalid index, wanted %s[i,j]" % self)
Exemple #3
0
    def __new__(cls, label, range=None, **kw_args):
        from sympy.utilities.misc import filldedent

        if isinstance(label, basestring):
            label = Symbol(label, integer=True)
        label, range = map(sympify, (label, range))

        if not label.is_integer:
            raise TypeError("Idx object requires an integer label.")

        elif is_sequence(range):
            if len(range) != 2:
                raise ValueError(filldedent("""
                    Idx range tuple must have length 2, but got %s""" % len(range)))
            for bound in range:
                if not (bound.is_integer or abs(bound) is S.Infinity):
                    raise TypeError("Idx object requires integer bounds.")
            args = label, Tuple(*range)
        elif isinstance(range, Expr):
            if not (range.is_integer or range is S.Infinity):
                raise TypeError("Idx object requires an integer dimension.")
            args = label, Tuple(0, range - 1)
        elif range:
            raise TypeError(filldedent("""
                The range must be an ordered iterable or
                integer SymPy expression."""))
        else:
            args = label,

        obj = Expr.__new__(cls, *args, **kw_args)
        return obj
Exemple #4
0
 def _contains(self, other):
     from sympy.matrices import Matrix
     from sympy.solvers.solveset import solveset, linsolve
     from sympy.utilities.iterables import iterable, cartes
     L = self.lamda
     if self._is_multivariate():
         if not iterable(L.expr):
             if iterable(other):
                 return S.false
             return other.as_numer_denom() in self.func(
                 Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
         if len(L.expr) != len(self.lamda.variables):
             raise NotImplementedError(filldedent('''
 Dimensions of input and output of Lambda are different.'''))
         eqs = [expr - val for val, expr in zip(other, L.expr)]
         variables = L.variables
         free = set(variables)
         if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
             solns = list(linsolve([e - val for e, val in
             zip(L.expr, other)], variables))
         else:
             syms = [e.free_symbols & free for e in eqs]
             solns = {}
             for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                 if not s:
                     if e != v:
                         return S.false
                     solns[vars[i]] = [v]
                     continue
                 elif len(s) == 1:
                     sy = s.pop()
                     sol = solveset(e, sy)
                     if sol is S.EmptySet:
                         return S.false
                     elif isinstance(sol, FiniteSet):
                         solns[sy] = list(sol)
                     else:
                         raise NotImplementedError
                 else:
                     raise NotImplementedError
             solns = cartes(*[solns[s] for s in variables])
     else:
         # assume scalar -> scalar mapping
         solnsSet = solveset(L.expr - other, L.variables[0])
         if solnsSet.is_FiniteSet:
             solns = list(solnsSet)
         else:
             raise NotImplementedError(filldedent('''
             Determining whether an ImageSet contains %s has not
             been implemented.''' % func_name(other)))
     for soln in solns:
         try:
             if soln in self.base_set:
                 return S.true
         except TypeError:
             return self.base_set.contains(soln.evalf())
     return S.false
Exemple #5
0
    def _solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        if len(system) == len(gens) == 1:
            zeros = list(roots(system[0], gens[-1]).keys())
            return [(zero,) for zero in zeros]

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if not zeros:
            return []

        if len(basis) == 1:
            return [(zero,) for zero in zeros]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero,))

        if solutions and len(solutions[0]) != len(gens):
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))
        return solutions
Exemple #6
0
def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs):
    """
    Find the optical setup conjugating the object/image waists.

    Parameters
    ==========

    wavelen : the wavelength of the beam
    waist_in and waist_out : the waists to be conjugated
    f : the focal distance of the element used in the conjugation

    Returns
    =======

    a tuple containing (s_in, s_out, f)
    s_in : the distance before the optical element
    s_out : the distance after the optical element
    f : the focal distance of the optical element

    Examples
    ========

    >>> from sympy.physics.optics import conjugate_gauss_beams
    >>> from sympy import symbols, factor
    >>> l, w_i, w_o, f = symbols('l w_i w_o f')

    >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
    f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))

    >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
    f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
              pi**2*w_i**4/(f**2*l**2)))/w_i**2

    >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
    f
    """
    #TODO add the other possible arguments
    wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out))
    m = waist_out / waist_in
    z = waist2rayleigh(waist_in, wavelen)
    if len(kwargs) != 1:
        raise ValueError("The function expects only one named argument")
    elif 'dist' in kwargs:
        raise NotImplementedError(filldedent('''
            Currently only focal length is supported as a parameter'''))
    elif 'f' in kwargs:
        f = sympify(kwargs['f'])
        s_in = f * (1 - sqrt(1/m**2 - z**2/f**2))
        s_out = gaussian_conj(s_in, z, f)[0]
    elif 's_in' in kwargs:
        raise NotImplementedError(filldedent('''
            Currently only focal length is supported as a parameter'''))
    else:
        raise ValueError(filldedent('''
            The functions expects the focal length as a named argument'''))
    return (s_in, s_out, f)
Exemple #7
0
 def __new__(cls, *args, **kwargs):
     from sympy.matrices.immutable import ImmutableDenseMatrix
     from sympy.matrices import zeros
     from sympy.matrices.matrices import MatrixBase
     from sympy.utilities.iterables import is_sequence
     isMat = lambda i: getattr(i, 'is_Matrix', False)
     if len(args) != 1 or \
             not is_sequence(args[0]) or \
             len(set([isMat(r) for r in args[0]])) != 1:
         raise ValueError(filldedent('''
             expecting a sequence of 1 or more rows
             containing Matrices.'''))
     rows = args[0] if args else []
     if not isMat(rows):
         if rows and isMat(rows[0]):
             rows = [rows]  # rows is not list of lists or []
         # regularity check
         # same number of matrices in each row
         blocky = ok = len(set([len(r) for r in rows])) == 1
         if ok:
             # same number of rows for each matrix in a row
             for r in rows:
                 ok = len(set([i.rows for i in r])) == 1
                 if not ok:
                     break
             blocky = ok
             # same number of cols for each matrix in each col
             for c in range(len(rows[0])):
                 ok = len(set([rows[i][c].cols
                     for i in range(len(rows))])) == 1
                 if not ok:
                     break
         if not ok:
             # same total cols in each row
             ok = len(set([
                 sum([i.cols for i in r]) for r in rows])) == 1
             if blocky and ok:
                 raise ValueError(filldedent('''
                     Although this matrix is comprised of blocks,
                     the blocks do not fill the matrix in a
                     size-symmetric fashion. To create a full matrix
                     from these arguments, pass them directly to
                     Matrix.'''))
             raise ValueError(filldedent('''
                 When there are not the same number of rows in each
                 row's matrices or there are not the same number of
                 total columns in each row, the matrix is not a
                 block matrix. If this matrix is known to consist of
                 blocks fully filling a 2-D space then see
                 Matrix.irregular.'''))
     mat = ImmutableDenseMatrix(rows, evaluate=False)
     obj = Basic.__new__(cls, mat)
     return obj
Exemple #8
0
    def __new__(cls, *args):
        from sympy.functions.elementary.integers import ceiling
        if len(args) == 1:
            if isinstance(args[0], range if PY3 else xrange):
                args = args[0].__reduce__()[1]  # use pickle method

        # expand range
        slc = slice(*args)

        if slc.step == 0:
            raise ValueError("step cannot be 0")

        start, stop, step = slc.start or 0, slc.stop, slc.step or 1
        try:
            start, stop, step = [
                w if w in [S.NegativeInfinity, S.Infinity]
                else sympify(as_int(w))
                for w in (start, stop, step)]
        except ValueError:
            raise ValueError(filldedent('''
    Finite arguments to Range must be integers; `imageset` can define
    other cases, e.g. use `imageset(i, i/10, Range(3))` to give
    [0, 1/10, 1/5].'''))

        if not step.is_Integer:
            raise ValueError(filldedent('''
    Ranges must have a literal integer step.'''))

        if all(i.is_infinite for i in  (start, stop)):
            if start == stop:
                # canonical null handled below
                start = stop = S.One
            else:
                raise ValueError(filldedent('''
    Either the start or end value of the Range must be finite.'''))

        if start.is_infinite:
            end = stop
        else:
            ref = start if start.is_finite else stop
            n = ceiling((stop - ref)/step)
            if n <= 0:
                # null Range
                start = end = 0
                step = 1
            else:
                end = ref + n*step
        return Basic.__new__(cls, start, end, step)
Exemple #9
0
    def __new__(
        cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
        hradius = sympify(hradius)
        vradius = sympify(vradius)

        eccentricity = sympify(eccentricity)

        if center is None:
            center = Point(0, 0)
        else:
            center = Point(center, dim=2)

        if len(center) != 2:
            raise ValueError('The center of "{0}" must be a two dimensional point'.format(cls))

        if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
            raise ValueError(filldedent('''
                Exactly two arguments of "hradius", "vradius", and
                "eccentricity" must not be None.'''))

        if eccentricity is not None:
            if hradius is None:
                hradius = vradius / sqrt(1 - eccentricity**2)
            elif vradius is None:
                vradius = hradius * sqrt(1 - eccentricity**2)

        if hradius == vradius:
            return Circle(center, hradius, **kwargs)

        if hradius == 0 or vradius == 0:
            return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))

        return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
def mechanics_printing(**kwargs):

    # mechanics_printing has slightly different functionality in 0.7.5 but
    # shouldn't fundamentally need a deprecation warning so we do this
    # little wrapper that gives the warning that things have changed.

    # TODO : Remove this warning in the release after SymPy 0.7.5

    # The message is only printed if this function is called with no args,
    # as was the previous only way to call it.

    def dict_is_empty(D):
        for k in D:
            return False
        return True

    if dict_is_empty(kwargs):
        msg = (
            "See the doc string for slight changes to this function: "
            "keyword args may be needed for the desired effect. "
            "Otherwise use sympy.physics.vector.init_vprinting directly."
        )
        SymPyDeprecationWarning(filldedent(msg)).warn()

    init_vprinting(**kwargs)
Exemple #11
0
 def __new__(cls, lhs, rhs, rop=None, **assumptions):
     # If called by a subclass, do nothing special and pass on to Expr.
     if cls is not Relational:
         return Expr.__new__(cls, lhs, rhs, **assumptions)
     # If called directly with an operator, look up the subclass
     # corresponding to that operator and delegate to it
     try:
         cls = cls.ValidRelationOperator[rop]
         rv = cls(lhs, rhs, **assumptions)
         # /// drop when Py2 is no longer supported
         # validate that Booleans are not being used in a relational
         # other than Eq/Ne;
         if isinstance(rv, (Eq, Ne)):
             pass
         elif isinstance(rv, Relational):  # could it be otherwise?
             from sympy.core.symbol import Symbol
             from sympy.logic.boolalg import Boolean
             for a in rv.args:
                 if isinstance(a, Symbol):
                     continue
                 if isinstance(a, Boolean):
                     from sympy.utilities.misc import filldedent
                     raise TypeError(filldedent('''
                         A Boolean argument can only be used in
                         Eq and Ne; all other relationals expect
                         real expressions.
                     '''))
         # \\\
         return rv
     except KeyError:
         raise ValueError(
             "Invalid relational operator symbol: %r" % rop)
Exemple #12
0
 def _solve_relational(r):
     if sym not in r.free_symbols:
         nonsymfail(r)
     rv = _solve_inequality(r, sym)
     if isinstance(rv, Relational):
         free = rv.args[1].free_symbols
         if rv.args[0] != sym or sym in free:
             raise NotImplementedError(filldedent('''
                 Unable to solve relational
                 %s for %s.''' % (r, sym)))
         if rv.rel_op == '==':
             # this equality has been affirmed to have the form
             # Eq(sym, rhs) where rhs is sym-free; it represents
             # a zero-width interval which will be ignored
             # whether it is an isolated condition or contained
             # within an And or an Or
             rv = S.false
         elif rv.rel_op == '!=':
             try:
                 rv = Or(sym < rv.rhs, sym > rv.rhs)
             except TypeError:
                 # e.g. x != I ==> all real x satisfy
                 rv = S.true
     elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
         rv = S.true
     return rv
Exemple #13
0
def reduce_inequalities(inequalities, symbols=[]):
    """Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import sympify as S, Symbol
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.inequalities import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    And(-3 <= x, x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    x >= -2*y + 1
    """
    if not iterable(inequalities):
        inequalities = [inequalities]
    inequalities = [sympify(i) for i in inequalities]

    gens = set().union(*[i.free_symbols for i in inequalities])

    if not iterable(symbols):
        symbols = [symbols]
    symbols = (set(symbols) or gens) & gens
    if any(i.is_real is False for i in symbols):
        raise TypeError(
            filldedent(
                """
            inequalities cannot contain symbols that are not real."""
            )
        )

    # make vanilla symbol real
    recast = dict([(i, Dummy(i.name, real=True)) for i in gens if i.is_real is None])
    inequalities = [i.xreplace(recast) for i in inequalities]
    symbols = set([i.xreplace(recast) for i in symbols])

    # prefilter
    keep = []
    for i in inequalities:
        if isinstance(i, Relational):
            i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
        elif i not in (True, False):
            i = Eq(i, 0)
        if i == True:
            continue
        elif i == False:
            return S.false
        if i.lhs.is_number:
            raise NotImplementedError("could not determine truth value of %s" % i)
        keep.append(i)
    inequalities = keep
    del keep

    # solve system
    rv = _reduce_inequalities(inequalities, symbols)

    # restore original symbols and return
    return rv.xreplace(dict([(v, k) for k, v in recast.items()]))
Exemple #14
0
 def __new__(cls, dist):
     if not isinstance(dist, (ContinuousDistribution, DiscreteDistribution)):
         raise ValueError(filldedent('''CompoundDistribution can only be
          initialized from ContinuousDistribution or DiscreteDistribution
          '''))
     _args = dist.args
     if not any([isinstance(i, RandomSymbol) for i in _args]):
         return dist
     return Basic.__new__(cls, dist)
Exemple #15
0
 def __new__(cls,dist, rvs):
     if not all([isinstance(rv, (Indexed, RandomSymbol))] for rv in rvs):
         raise ValueError(filldedent('''Marginal distribution can be
          intitialised only in terms of random variables or indexed random
          variables'''))
     rvs = Tuple.fromiter(rv for rv in rvs)
     if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
         return dist
     return Basic.__new__(cls, dist, rvs)
Exemple #16
0
 def _eval_rewrite_as_ITE(self, *args):
     byfree = {}
     args = list(args)
     default = any(c == True for b, c in args)
     for i, (b, c) in enumerate(args):
         if not isinstance(b, Boolean) and b != True:
             raise TypeError(filldedent('''
                 Expecting Boolean or bool but got `%s`
                 ''' % func_name(b)))
         if c == True:
             break
         # loop over independent conditions for this b
         for c in c.args if isinstance(c, Or) else [c]:
             free = c.free_symbols
             x = free.pop()
             try:
                 byfree[x] = byfree.setdefault(
                     x, S.EmptySet).union(c.as_set())
             except NotImplementedError:
                 if not default:
                     raise NotImplementedError(filldedent('''
                         A method to determine whether a multivariate
                         conditional is consistent with a complete coverage
                         of all variables has not been implemented so the
                         rewrite is being stopped after encountering `%s`.
                         This error would not occur if a default expression
                         like `(foo, True)` were given.
                         ''' % c))
             if byfree[x] in (S.UniversalSet, S.Reals):
                 # collapse the ith condition to True and break
                 args[i] = list(args[i])
                 c = args[i][1] = True
                 break
         if c == True:
             break
     if c != True:
         raise ValueError(filldedent('''
             Conditions must cover all reals or a final default
             condition `(foo, True)` must be given.
             '''))
     last, _ = args[i]  # ignore all past ith arg
     for a, c in reversed(args[:i]):
         last = ITE(c, a, last)
     return _canonical(last)
Exemple #17
0
 def __new__(cls, *args):
     if len(args) == 1 and isinstance(args[0], Matrix) \
             and args[0].shape == (2, 1):
         temp = args[0]
     elif len(args) == 2:
         temp = ((args[0],), (args[1],))
     else:
         raise ValueError(filldedent('''
             Expecting 2x1 Matrix or the 2 elements of
             the Matrix but got %s''' % str(args)))
     return Matrix.__new__(cls, temp)
Exemple #18
0
    def __new__(cls, base, *args, **kw_args):
        from sympy.utilities.misc import filldedent

        if not args:
            raise IndexException("Indexed needs at least one index.")
        if isinstance(base, (basestring, Symbol)):
            base = IndexedBase(base)
        elif not isinstance(base, IndexedBase):
            raise TypeError(filldedent("""
                Indexed expects string, Symbol or IndexedBase as base."""))
        return Expr.__new__(cls, base, *args, **kw_args)
    def reflect(self, line):
        """Override GeometryEntity.reflect since the radius
        is not a GeometryEntity.

        Examples
        ========

        >>> from sympy import Circle, Line
        >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
        Circle(Point(1, 0), -1)
        >>> from sympy import Ellipse, Line, Point
        >>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
        Traceback (most recent call last):
        ...
        NotImplementedError:
        General Ellipse is not supported but the equation of the reflected
        Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
        37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1

        Notes
        =====

        Until the general ellipse (with no axis parallel to the x-axis) is
        supported a NotImplemented error is raised and the equation whose
        zeros define the rotated ellipse is given.

        """
        def _uniquely_named_symbol(xname, *exprs):
            """Return a symbol which, when printed, will have a name unique
            from any other already in the expressions given. The name is made
            unique by prepending underscores.
            """
            prefix = '%s'
            x = prefix % xname
            syms = set.union(*[e.free_symbols for e in exprs])
            while any(x == str(s) for s in syms):
                prefix = '_' + prefix
                x = prefix % xname
            return _symbol(x)

        if line.slope in (0, oo):
            c = self.center
            c = c.reflect(line)
            return self.func(c, -self.hradius, self.vradius)
        else:
            x, y = [_uniquely_named_symbol(name, self, line) for name in 'xy']
            expr = self.equation(x, y)
            p = Point(x, y).reflect(line)
            result = expr.subs(zip((x, y), p.args
                               ), simultaneous=True)
            raise NotImplementedError(filldedent(
                'General Ellipse is not supported but the equation '
                'of the reflected Ellipse is given by the zeros of: ' +
                "f(%s, %s) = %s" % (str(x), str(y), str(result))))
Exemple #20
0
 def _calc_limit(a, b):
     """
     replace d with a, using subs if possible, otherwise limit
     where sign of b is considered
     """
     avals = list(set([_calc_limit_1(Fi, a, b) for Fi in F]))
     if len(avals) > 1:
         raise ValueError(filldedent('''
         The mapping between F(x) and f(u) did not
         give a unique limit.'''))
     return avals[0]
def exprcondpair_new(cls, expr, cond):
    expr = as_Basic(expr)
    if cond == True:
        return Tuple.__new__(cls, expr, true)
    elif cond == False:
        return Tuple.__new__(cls, expr, false)

    if not isinstance(cond, Boolean):
        raise TypeError(filldedent('''
            Second argument must be a Boolean,
            not `%s`''' % func_name(cond)))
    return Tuple.__new__(cls, expr, cond)
Exemple #22
0
 def __init__(self, *args):
     if len(args) == 4:
         temp = ((args[0], args[1]), (args[2], args[3]))
     elif len(args) == 1 \
          and isinstance(args[0], Matrix) \
          and args[0].shape == (2, 2):
         temp = args[0]
     else:
         raise ValueError(filldedent('''
             Expecting 2x2 Matrix or the 4 elements of
             the Matrix but got %s''' % str(args)))
     Matrix.__init__(self, temp)
Exemple #23
0
    def __new__(cls, base, *args, **kw_args):
        from sympy.utilities.misc import filldedent

        if not args:
            raise IndexException("Indexed needs at least one index.")
        if isinstance(base, (string_types, Symbol)):
            base = IndexedBase(base)
        elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
            raise TypeError(filldedent("""
                Indexed expects string, Symbol, or IndexedBase as base."""))
        args = list(map(sympify, args))
        return Expr.__new__(cls, base, *args, **kw_args)
Exemple #24
0
    def __new__(cls, label, range=None, **kw_args):
        from sympy.utilities.misc import filldedent

        if isinstance(label, string_types):
            label = Symbol(label, integer=True)
        label, range = list(map(sympify, (label, range)))

        if label.is_Number:
            if not label.is_integer:
                raise TypeError("Index is not an integer number.")
            return label

        if not label.is_integer:
            raise TypeError("Idx object requires an integer label.")

        elif is_sequence(range):
            if len(range) != 2:
                raise ValueError(filldedent("""
                    Idx range tuple must have length 2, but got %s""" % len(range)))
            for bound in range:
                if (bound.is_integer is False and bound is not S.Infinity
                        and bound is not S.NegativeInfinity):
                    raise TypeError("Idx object requires integer bounds.")
            args = label, Tuple(*range)
        elif isinstance(range, Expr):
            if not (range.is_integer or range is S.Infinity):
                raise TypeError("Idx object requires an integer dimension.")
            args = label, Tuple(0, range - 1)
        elif range:
            raise TypeError(filldedent("""
                The range must be an ordered iterable or
                integer SymPy expression."""))
        else:
            args = label,

        obj = Expr.__new__(cls, *args, **kw_args)
        obj._assumptions["finite"] = True
        obj._assumptions["real"] = True
        return obj
Exemple #25
0
def _reduce_inequalities(inequalities, symbols):
    # helper for reduce_inequalities

    poly_part, abs_part = {}, {}
    other = []

    for inequality in inequalities:

        expr, rel = inequality.lhs, inequality.rel_op  # rhs is 0

        # check for gens using atoms which is more strict than free_symbols to
        # guard against EX domain which won't be handled by
        # reduce_rational_inequalities
        gens = expr.atoms(Symbol)

        if len(gens) == 1:
            gen = gens.pop()
        else:
            common = expr.free_symbols & symbols
            if len(common) == 1:
                gen = common.pop()
                other.append(_solve_inequality(Relational(expr, 0, rel), gen))
                continue
            else:
                raise NotImplementedError(
                    filldedent(
                        """
                    inequality has more than one
                    symbol of interest"""
                    )
                )

        if expr.is_polynomial(gen):
            poly_part.setdefault(gen, []).append((expr, rel))
        else:
            components = expr.find(lambda u: u.has(gen) and (u.is_Function or u.is_Pow and not u.exp.is_Integer))
            if components and all(isinstance(i, Abs) for i in components):
                abs_part.setdefault(gen, []).append((expr, rel))
            else:
                other.append(_solve_inequality(Relational(expr, 0, rel), gen))

    poly_reduced = []
    abs_reduced = []

    for gen, exprs in poly_part.items():
        poly_reduced.append(reduce_rational_inequalities([exprs], gen))

    for gen, exprs in abs_part.items():
        abs_reduced.append(reduce_abs_inequalities(exprs, gen))

    return And(*(poly_reduced + abs_reduced + other))
Exemple #26
0
    def __new__(cls, p1, pt=None, angle=None, **kwargs):
        p1 = Point(p1)
        if pt is not None and angle is None:
            try:
                p2 = Point(pt)
            except NotImplementedError:
                from sympy.utilities.misc import filldedent

                raise ValueError(
                    filldedent(
                        """
                    The 2nd argument was not a valid Point; if
                    it was meant to be an angle it should be
                    given with keyword "angle"."""
                    )
                )
            if p1 == p2:
                raise ValueError("A Ray requires two distinct points.")
        elif angle is not None and pt is None:
            # we need to know if the angle is an odd multiple of pi/2
            c = pi_coeff(sympify(angle))
            p2 = None
            if c is not None:
                if c.is_Rational:
                    if c.q == 2:
                        if c.p == 1:
                            p2 = p1 + Point(0, 1)
                        elif c.p == 3:
                            p2 = p1 + Point(0, -1)
                    elif c.q == 1:
                        if c.p == 0:
                            p2 = p1 + Point(1, 0)
                        elif c.p == 1:
                            p2 = p1 + Point(-1, 0)
                if p2 is None:
                    c *= S.Pi
            else:
                c = angle % (2 * S.Pi)
            if not p2:
                m = 2 * c / S.Pi
                left = And(1 < m, m < 3)  # is it in quadrant 2 or 3?
                x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
                y = Piecewise((-C.tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (C.tan(c), True)), True))
                p2 = p1 + Point(x, y)
        else:
            raise ValueError('A 2nd point or keyword "angle" must be used.')

        return LinearEntity.__new__(cls, p1, p2, **kwargs)
Exemple #27
0
    def copyin_matrix(self, key, value):
        """Copy in values from a matrix into the given bounds.

        Parameters
        ==========

        key : slice
            The section of this matrix to replace.
        value : Matrix
            The matrix to copy values from.

        Examples
        ========

        >>> from sympy.matrices import Matrix, eye
        >>> M = Matrix([[0, 1], [2, 3], [4, 5]])
        >>> I = eye(3)
        >>> I[:3, :2] = M
        >>> I
        Matrix([
        [0, 1, 0],
        [2, 3, 0],
        [4, 5, 1]])
        >>> I[0, 1] = M
        >>> I
        Matrix([
        [0, 0, 1],
        [2, 2, 3],
        [4, 4, 5]])

        See Also
        ========

        copyin_list
        """
        rlo, rhi, clo, chi = self.key2bounds(key)
        shape = value.shape
        dr, dc = rhi - rlo, chi - clo
        if shape != (dr, dc):
            raise ShapeError(
                filldedent(
                    "The Matrix `value` doesn't have the " "same dimensions " "as the in sub-Matrix given by `key`."
                )
            )

        for i in range(value.rows):
            for j in range(value.cols):
                self[i + rlo, j + clo] = value[i, j]
Exemple #28
0
    def __new__(cls, base, *args, **kw_args):
        from sympy.utilities.misc import filldedent
        from sympy.tensor.array.ndim_array import NDimArray
        from sympy.matrices.matrices import MatrixBase

        if not args:
            raise IndexException("Indexed needs at least one index.")
        if isinstance(base, (string_types, Symbol)):
            base = IndexedBase(base)
        elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
            raise TypeError(filldedent("""
                Indexed expects string, Symbol, or IndexedBase as base."""))
        args = list(map(sympify, args))
        if isinstance(base, (NDimArray, collections.Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
            return base[args]
        return Expr.__new__(cls, base, *args, **kw_args)
Exemple #29
0
    def __new__(cls, expr, cond):
        expr = as_Basic(expr)
        if cond == True:
            return Tuple.__new__(cls, expr, true)
        elif cond == False:
            return Tuple.__new__(cls, expr, false)
        elif isinstance(cond, Basic) and cond.has(Piecewise):
            cond = piecewise_fold(cond)
            if isinstance(cond, Piecewise):
                cond = cond.rewrite(ITE)

        if not isinstance(cond, Boolean):
            raise TypeError(filldedent('''
                Second argument must be a Boolean,
                not `%s`''' % func_name(cond)))
        return Tuple.__new__(cls, expr, cond)
Exemple #30
0
 def _solve_relational(r):
     rv = _solve_inequality(r, sym)
     if isinstance(rv, Relational) and \
             sym in rv.free_symbols:
         if rv.args[0] != sym:
             raise NotImplementedError(filldedent('''
                 Unable to solve relational
                 %s for %s.''' % (r, sym)))
         if rv.rel_op == '!=':
             try:
                 rv = Or(sym < rv.rhs, sym > rv.rhs)
             except TypeError:
                 # e.g. x != I ==> all real x satisfy
                 rv = S.true
     if rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
         rv = S.true
     return rv
Exemple #31
0
def linodesolve(A, t, b=None, B=None, type="auto", doit=False):
    r"""
    System of n equations linear first-order differential equations

    Explanation
    ===========

    This solver solves the system of ODEs of the follwing form:

    .. math::
        X'(t) = A(t) X(t) +  b(t)

    Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
    $b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$

    Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
    differently.

    When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
    the solution is:

    .. math::
        X(t) = \exp(A t) C

    Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.

    When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
    the solution is:

    .. math::
        X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)

    When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
    $b(t)$ is a zero vector i.e. system is homogeneous, the solution is:

    .. math::
        X(t) = \exp(B(t)) C

    When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
    non-homogeneous, the solution is:

    .. math::
        X(t) =  e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)

    The final solution is the general solution for all the four equations since a constant coefficient
    matrix is always commutative with its antidervative.

    Parameters
    ==========

    A : Matrix
        Coefficient matrix of the system of linear first order ODEs.
    t : Symbol
        Independent variable in the system of ODEs.
    b : Matrix or None
        Non-homogeneous term in the system of ODEs. If None is passed,
        a homogeneous system of ODEs is assumed.
    B : Matrix or None
        Antiderivative of the coefficient matrix. If the antiderivative
        is not passed and the solution requires the term, then the solver
        would compute it internally.
    type : String
        Type of the system of ODEs passed. Depending on the type, the
        solution is evaluated. The type values allowed and the corresponding
        system it solves are: "type1" for constant coefficient homogeneous
        "type2" for constant coefficient non-homogeneous, "type3" for non-constant
        coefficient homogeneous and "type4" for non-constant coefficient non-homogeneous.
        The default value is "auto" which will let the solver decide the correct type of
        the system passed.
    doit : Boolean
        Evaluate the solution if True, default value is False

    Examples
    ========

    To solve the system of ODEs using this function directly, several things must be
    done in the right order. Wrong inputs to the function will lead to incorrect results.

    >>> from sympy import symbols, Function, Eq
    >>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
    >>> from sympy.solvers.ode.subscheck import checksysodesol
    >>> f, g = symbols("f, g", cls=Function)
    >>> x, a = symbols("x, a")
    >>> funcs = [f(x), g(x)]
    >>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]

    Here, it is important to note that before we derive the coefficient matrix, it is
    important to get the system of ODEs into the desired form. For that we will use
    :obj:`sympy.solvers.ode.systems.canonical_odes()`.

    >>> eqs = canonical_odes(eqs, funcs, x)
    >>> eqs
    [Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]

    Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
    non-homogeneous term if it is there.

    >>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
    >>> A = -A0

    We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
    :obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
    to finally pass it to the solver.

    >>> system_info = linodesolve_type(A, x, b=b)
    >>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type'])

    Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.subscheck.checksysodesol()`

    >>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
    >>> checksysodesol(eqs, sol)
    (True, [0, 0])

    We can also use the doit method to evaluate the solutions passed by the function.

    >>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)

    Now, we will look at a system of ODEs which is non-constant.

    >>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]

    The system defined above is already in the desired form, so we don't have to convert it.

    >>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
    >>> A = -A0

    A user can also pass the commutative antidervative required for type3 and type4 system of ODEs.
    Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
    with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
    If it does have a commutative antiderivative, then the function just returns the information about the system.

    >>> system_info = linodesolve_type(A, x, b=b)

    Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
    passed, then the solver will compute the required arguments internally.

    >>> sol_vector = linodesolve(A, x, b=b)

    Once again, we can verify the solution obtained.

    >>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
    >>> checksysodesol(eqs, sol)
    (True, [0, 0])

    Returns
    =======

    List

    Raises
    ======

    ValueError
        This error is raised when the coefficient matrix, non-homogeneous term
        or the antiderivative, if passed, aren't a matrix or
        don't have correct dimensions
    NonSquareMatrixError
        When the coefficient matrix or its antiderivative, if passed isn't a square
        matrix
    NotImplementedError
        If the coefficient matrix doesn't have a commutative antiderivative

    See Also
    ========

    linear_ode_to_matrix: Coefficient matrix computation function
    canonical_odes: System of ODEs representation change
    linodesolve_type: Getting information about systems of ODEs to pass in this solver

    """

    if not isinstance(A, MatrixBase):
        raise ValueError(
            filldedent('''\
            The coefficients of the system of ODEs should be of type Matrix
        '''))

    if not A.is_square:
        raise NonSquareMatrixError(
            filldedent('''\
            The coefficient matrix must be a square
        '''))

    if b is not None:
        if not isinstance(b, MatrixBase):
            raise ValueError(
                filldedent('''\
                The non-homogeneous terms of the system of ODEs should be of type Matrix
            '''))

        if A.rows != b.rows:
            raise ValueError(
                filldedent('''\
                The system of ODEs should have the same number of non-homogeneous terms and the number of
                equations
            '''))

    if B is not None:
        if not isinstance(B, MatrixBase):
            raise ValueError(
                filldedent('''\
                The antiderivative of coefficients of the system of ODEs should be of type Matrix
            '''))

        if not B.is_square:
            raise NonSquareMatrixError(
                filldedent('''\
                The antiderivative of the coefficient matrix must be a square
            '''))

        if A.rows != B.rows:
            raise ValueError(
                filldedent('''\
                        The coefficient matrix and its antiderivative should have same dimensions
                    '''))

    if not any(type == "type{}".format(i)
               for i in range(1, 5)) and not type == "auto":
        raise ValueError(
            filldedent('''\
                    The input type should be a valid one
                '''))

    n = A.rows

    constants = numbered_symbols(prefix='C', cls=Symbol, start=1)
    Cvect = Matrix(list(next(constants) for _ in range(n)))

    if (type == "type2" or type == "type4") and b is None:
        b = zeros(n, 1)

    if type == "auto":
        system_info = linodesolve_type(A, t, b=b)
        type = system_info["type"]
        B = system_info["antiderivative"]

    if type == "type1" or type == "type2":
        P, J = matrix_exp_jordan_form(A, t)
        P = simplify(P)

        if type == "type1":
            sol_vector = P * (J * Cvect)
        else:
            sol_vector = P * J * (
                (J.inv() * P.inv() * b).applyfunc(lambda x: Integral(x, t)) +
                Cvect)

    else:
        if B is None:
            B, _ = _is_commutative_anti_derivative(A, t)

        if type == "type3":
            sol_vector = B.exp() * Cvect
        else:
            sol_vector = B.exp() * ((
                (-B).exp() * b).applyfunc(lambda x: Integral(x, t)) + Cvect)

    gens = sol_vector.atoms(exp)

    if type != "type1":
        sol_vector = [expand_mul(s) for s in sol_vector]

    sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]

    if doit:
        sol_vector = [s.doit() for s in sol_vector]

    return sol_vector
Exemple #32
0
def sample(expr, condition=None, size=(), library='scipy', numsamples=1,
                                                                    **kwargs):
    """
    A realization of the random expression

    Parameters
    ==========

    expr : Expression of random variables
        Expression from which sample is extracted
    condition : Expr containing RandomSymbols
        A conditional expression
    size : int, tuple
        Represents size of each sample in numsamples
    library : str
        - 'scipy' : Sample using scipy
        - 'numpy' : Sample using numpy
        - 'pymc3' : Sample using PyMC3

        Choose any of the available options to sample from as string,
        by default is 'scipy'
    numsamples : int
        Number of samples, each with size as ``size``

    Examples
    ========

    >>> from sympy.stats import Die, sample, Normal, Geometric
    >>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable

    >>> die_roll = sample(X + Y + Z) # doctest: +SKIP
    >>> next(die_roll) # doctest: +SKIP
    6
    >>> N = Normal('N', 3, 4) # Continuous Random Variable
    >>> samp = next(sample(N)) # doctest: +SKIP
    >>> samp in N.pspace.domain.set # doctest: +SKIP
    True
    >>> samp = next(sample(N, N>0)) # doctest: +SKIP
    >>> samp > 0 # doctest: +SKIP
    True
    >>> samp_list = next(sample(N, size=4)) # doctest: +SKIP
    >>> [sam in N.pspace.domain.set for sam in samp_list] # doctest: +SKIP
    [True, True, True, True]
    >>> G = Geometric('G', 0.5) # Discrete Random Variable
    >>> samp_list = next(sample(G, size=3)) # doctest: +SKIP
    >>> samp_list # doctest: +SKIP
    array([10,  4,  1])
    >>> [sam in G.pspace.domain.set for sam in samp_list] # doctest: +SKIP
    [True, True, True]
    >>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable
    >>> samp_list = next(sample(MN, size=4)) # doctest: +SKIP
    >>> samp_list # doctest: +SKIP
    array([[4.22564264, 3.23364418],
           [3.41002011, 4.60090908],
           [3.76151866, 4.77617143],
           [4.71440865, 2.65714157]])
    >>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list] # doctest: +SKIP
    [True, True, True, True]


    Returns
    =======

    sample: iterator object
        iterator object containing the sample/samples of given expr

    """
    ### TODO: Remove the user warnings in the future releases
    message = ("The return type of sample has been changed to return an "
                  "iterator object since version 1.7. For more information see "
                  "https://github.com/sympy/sympy/issues/19061")
    warnings.warn(filldedent(message))
    return sample_iter(expr, condition, size=size, library=library,
                                                        numsamples=numsamples)
Exemple #33
0
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    Or(And(-oo < x, x <= -2), And(2 <= x, x < oo))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    (-oo, -2] U [2, oo)

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    [2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    (0, pi)

    """
    from sympy.calculus.util import (continuous_domain, periodicity,
        function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    d = Dummy(real=True)
    expr = expr.subs(gen, d)
    _gen = gen
    gen = d
    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            singularities = []
            for d in denoms(e):
                singularities.extend(solvify(d, gen, domain))

            domain = continuous_domain(e, gen, domain)
            solns = solvify(e, gen, domain)

            if solns is None:
                raise NotImplementedError(filldedent('''The inequality cannot be
                    solved using solve_univariate_inequality.'''))

            include_x = expr.func(0, 0)

            def valid(x):
                v = e.subs(gen, x)
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    return S.false

            start = domain.inf
            sol_sets = [S.EmptySet]
            try:
                discontinuities = domain.boundary - FiniteSet(domain.inf, domain.sup)
                critical_points = set(solns + singularities + list(discontinuities))
                reals = _nsort(critical_points, separated=True)[0]

            except NotImplementedError:
                raise NotImplementedError('sorting of these roots is not supported')

            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if end in [S.NegativeInfinity, S.Infinity]:
                    if valid(S(0)):
                        sol_sets.append(Interval(start, S.Infinity, True, True))
                        break

                pt = ((start + end)/2 if start is not S.NegativeInfinity else
                    (end/2 if end.is_positive else
                    (2*end if end.is_negative else
                    end - 1)))
                if valid(pt):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                elif include_x:
                    sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup

            # in case start == -oo then there were no solutions so we just
            # check a point between -oo and oo (e.g. 0) else pick a point
            # past the last solution (which is start after the end of the
            # for-loop above
            pt = (0 if start is S.NegativeInfinity else
                (start/2 if start.is_negative else
                (2*start if start.is_positive else
                start + 1)))

            if pt >= end:
                pt = (start + end)/2

            if valid(pt):
                sol_sets.append(Interval(start, end, True, True))

            rv = Union(*sol_sets).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemple #34
0
    def __new__(cls, *args):
        from sympy.functions.elementary.integers import ceiling
        if len(args) == 1:
            if isinstance(args[0], range):
                raise TypeError(
                    'use sympify(%s) to convert range to Range' % args[0])

        # expand range
        slc = slice(*args)

        if slc.step == 0:
            raise ValueError("step cannot be 0")

        start, stop, step = slc.start or 0, slc.stop, slc.step or 1
        try:
            ok = []
            for w in (start, stop, step):
                w = sympify(w)
                if w in [S.NegativeInfinity, S.Infinity] or (
                        w.has(Symbol) and w.is_integer != False):
                    ok.append(w)
                elif not w.is_Integer:
                    if w.is_infinite:
                        raise ValueError('infinite symbols not allowed')
                    raise ValueError
                else:
                    ok.append(w)
        except ValueError:
            raise ValueError(filldedent('''
    Finite arguments to Range must be integers; `imageset` can define
    other cases, e.g. use `imageset(i, i/10, Range(3))` to give
    [0, 1/10, 1/5].'''))
        start, stop, step = ok

        null = False
        if any(i.has(Symbol) for i in (start, stop, step)):
            dif = stop - start
            n = dif/step
            if n.is_Rational:
                from sympy import floor
                if dif == 0:
                    null = True
                else:  # (x, x + 5, 2) or (x, 3*x, x)
                    n = floor(n)
                    end = start + n*step
                    if dif.is_Rational:  # (x, x + 5, 2)
                        if (end - stop).is_negative:
                            end += step
                    else:  # (x, 3*x, x)
                        if (end/stop - 1).is_negative:
                            end += step
            elif n.is_extended_negative:
                null = True
            else:
                end = stop  # other methods like sup and reversed must fail
        elif start.is_infinite:
            span = step*(stop - start)
            if span is S.NaN or span <= 0:
                null = True
            elif step.is_Integer and stop.is_infinite and abs(step) != 1:
                raise ValueError(filldedent('''
                    Step size must be %s in this case.''' % (1 if step > 0 else -1)))
            else:
                end = stop
        else:
            oostep = step.is_infinite
            if oostep:
                step = S.One if step > 0 else S.NegativeOne
            n = ceiling((stop - start)/step)
            if n <= 0:
                null = True
            elif oostep:
                step = S.One  # make it canonical
                end = start + step
            else:
                end = start + n*step
        if null:
            start = end = S.Zero
            step = S.One
        return Basic.__new__(cls, start, end, step)
Exemple #35
0
    def transform(self, x, u):
        r"""
        Performs a change of variables from `x` to `u` using the relationship
        given by `x` and `u` which will define the transformations `f` and `F`
        (which are inverses of each other) as follows:

        1) If `x` is a Symbol (which is a variable of integration) then `u`
           will be interpreted as some function, f(u), with inverse F(u).
           This, in effect, just makes the substitution of x with f(x).

        2) If `u` is a Symbol then `x` will be interpreted as some function,
           F(x), with inverse f(u). This is commonly referred to as
           u-substitution.

        Once f and F have been identified, the transformation is made as
        follows:

        .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x)
                  \frac{\mathrm{d}}{\mathrm{d}x}

        where `F(x)` is the inverse of `f(x)` and the limits and integrand have
        been corrected so as to retain the same value after integration.

        Notes
        =====

        The mappings, F(x) or f(u), must lead to a unique integral. Linear
        or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will
        always work; quadratic expressions like `x**2 - 1` are acceptable
        as long as the resulting integrand does not depend on the sign of
        the solutions (see examples).

        The integral will be returned unchanged if `x` is not a variable of
        integration.

        `x` must be (or contain) only one of of the integration variables. If
        `u` has more than one free symbol then it should be sent as a tuple
        (`u`, `uvar`) where `uvar` identifies which variable is replacing
        the integration variable.
        XXX can it contain another integration variable?

        Examples
        ========

        >>> from sympy.abc import a, b, c, d, x, u, y
        >>> from sympy import Integral, S, cos, sqrt

        >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1))

        transform can change the variable of integration

        >>> i.transform(x, u)
        Integral(u*cos(u**2 - 1), (u, 0, 1))

        transform can perform u-substitution as long as a unique
        integrand is obtained:

        >>> i.transform(x**2 - 1, u)
        Integral(cos(u)/2, (u, -1, 0))

        This attempt fails because x = +/-sqrt(u + 1) and the
        sign does not cancel out of the integrand:

        >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
        Traceback (most recent call last):
        ...
        ValueError:
        The mapping between F(x) and f(u) did not give a unique integrand.

        transform can do a substitution. Here, the previous
        result is transformed back into the original expression
        using "u-substitution":

        >>> ui = _
        >>> _.transform(sqrt(u + 1), x) == i
        True

        We can accomplish the same with a regular substitution:

        >>> ui.transform(u, x**2 - 1) == i
        True

        If the `x` does not contain a symbol of integration then
        the integral will be returned unchanged. Integral `i` does
        not have an integration variable `a` so no change is made:

        >>> i.transform(a, x) == i
        True

        When `u` has more than one free symbol the symbol that is
        replacing `x` must be identified by passing `u` as a tuple:

        >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u))
        Integral(a + u, (u, -a, -a + 1))
        >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a))
        Integral(a + u, (a, -u, -u + 1))

        See Also
        ========

        variables : Lists the integration variables
        as_dummy : Replace integration variables with dummy ones
        """

        d = Dummy('d')

        xfree = x.free_symbols.intersection(self.variables)
        if len(xfree) > 1:
            raise ValueError('F(x) can only contain one of: %s' %
                             self.variables)
        xvar = xfree.pop() if xfree else d

        if xvar not in self.variables:
            return self

        u = sympify(u)
        if isinstance(u, Expr):
            ufree = u.free_symbols
            if len(ufree) != 1:
                raise ValueError(
                    filldedent('''
                When f(u) has more than one free symbol, the one replacing x
                must be identified: pass f(u) as (f(u), u)'''))
            uvar = ufree.pop()
        else:
            u, uvar = u
            if uvar not in u.free_symbols:
                raise ValueError(
                    filldedent('''
                Expecting a tuple (expr, symbol) where symbol identified
                a free symbol in expr, but symbol is not in expr's free
                symbols.'''))
            if not isinstance(uvar, Symbol):
                raise ValueError(
                    filldedent('''
                Expecting a tuple (expr, symbol) but didn't get
                a symbol; got %s''' % uvar))

        if x.is_Symbol and u.is_Symbol:
            return self.xreplace({x: u})

        if not x.is_Symbol and not u.is_Symbol:
            raise ValueError('either x or u must be a symbol')

        if uvar == xvar:
            return self.transform(x, u.subs(uvar, d)).xreplace({d: uvar})

        if uvar in self.limits:
            raise ValueError(
                filldedent('''
            u must contain the same variable as in x
            or a variable that is not already an integration variable'''))

        if not x.is_Symbol:
            F = [x.subs(xvar, d)]
            soln = solve(u - x, xvar, check=False)
            if not soln:
                raise ValueError('no solution for solve(F(x) - f(u), x)')
            f = [fi.subs(uvar, d) for fi in soln]
        else:
            f = [u.subs(uvar, d)]
            pdiff, reps = posify(u - x)
            puvar = uvar.subs([(v, k) for k, v in reps.items()])
            soln = [s.subs(reps) for s in solve(pdiff, puvar)]
            if not soln:
                raise ValueError('no solution for solve(F(x) - f(u), u)')
            F = [fi.subs(xvar, d) for fi in soln]

        newfuncs = set([
            (self.function.subs(xvar, fi) * fi.diff(d)).subs(d, uvar)
            for fi in f
        ])
        if len(newfuncs) > 1:
            raise ValueError(
                filldedent('''
            The mapping between F(x) and f(u) did not give
            a unique integrand.'''))
        newfunc = newfuncs.pop()

        def _calc_limit_1(F, a, b):
            """
            replace d with a, using subs if possible, otherwise limit
            where sign of b is considered
            """
            wok = F.subs(d, a)
            if wok is S.NaN or wok.is_finite is False and a.is_finite:
                return limit(sign(b) * F, d, a)
            return wok

        def _calc_limit(a, b):
            """
            replace d with a, using subs if possible, otherwise limit
            where sign of b is considered
            """
            avals = list(set([_calc_limit_1(Fi, a, b) for Fi in F]))
            if len(avals) > 1:
                raise ValueError(
                    filldedent('''
                The mapping between F(x) and f(u) did not
                give a unique limit.'''))
            return avals[0]

        newlimits = []
        for xab in self.limits:
            sym = xab[0]
            if sym == xvar:
                if len(xab) == 3:
                    a, b = xab[1:]
                    a, b = _calc_limit(a, b), _calc_limit(b, a)
                    if a > b:
                        a, b = b, a
                        newfunc = -newfunc
                    newlimits.append((uvar, a, b))
                elif len(xab) == 2:
                    a = _calc_limit(xab[1], 1)
                    newlimits.append((uvar, a))
                else:
                    newlimits.append(uvar)
            else:
                newlimits.append(xab)

        return self.func(newfunc, *newlimits)
Exemple #36
0
def solve_univariate_inequality(expr,
                                gen,
                                relational=True,
                                domain=S.Reals,
                                continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in :func:`sympy.solvers.solveset.solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy import im
    from sympy.calculus.util import continuous_domain, periodicity, function_range
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solvify, solveset

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_extended_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_extended_real is None:
        gen = Dummy("gen", extended_real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(
                filldedent("""
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                """))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period == S.Zero:
            e = expand_mul(e)
            const = expr.func(e, 0)
            if const is S.true:
                rv = domain
            elif const is S.false:
                rv = S.EmptySet
        elif period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == "<" or rel == "<=":
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == ">" or rel == ">=":
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                # replace gen with generic x since it's
                # univariate anyway
                raise NotImplementedError(
                    filldedent("""
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    """ % expr.subs(gen, Symbol("x"))))

            expanded_e = expand_mul(e)

            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, expand_mul(x))
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_extended_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        "relationship did not evaluate: %s" % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(expanded_e, gen, domain)

            include_x = "=" in expr.rel_op and expr.rel_op != "!="

            try:
                discontinuities = set(domain.boundary -
                                      FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(
                    *(solns + singularities +
                      list(discontinuities))).intersection(
                          Interval(
                              domain.inf,
                              domain.sup,
                              domain.inf not in domain,
                              domain.sup not in domain,
                          ))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    sifted = sift(critical_points,
                                  lambda x: x.is_extended_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = list(sorted(reals))
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError(
                    "sorting of these roots is not supported")

            # If expr contains imaginary coefficients, only take real
            # values of x for which the imaginary part is 0
            make_real = S.Reals
            if im(expanded_e) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(im(expanded_e), gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if (z not in singularities and valid(z)
                                    and z.is_extended_real):
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if (pt not in singularities
                                        and pt.is_extended_real and valid(pt)):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if isinstance(im_sol, EmptySet):
                    raise ValueError(
                        filldedent("""
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        """ % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if im(expanded_e) != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection((Union(*sol_sets)), make_real,
                                  _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemple #37
0
def reduce_inequalities(inequalities, symbols=[]):
    """Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import sympify as S, Symbol
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.inequalities import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    (-3 <= x) & (x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    (x < oo) & (x >= 1 - 2*y)
    """
    if not iterable(inequalities):
        inequalities = [inequalities]
    inequalities = [sympify(i) for i in inequalities]

    gens = set().union(*[i.free_symbols for i in inequalities])

    if not iterable(symbols):
        symbols = [symbols]
    symbols = (set(symbols) or gens) & gens
    if any(i.is_extended_real is False for i in symbols):
        raise TypeError(
            filldedent("""
            inequalities cannot contain symbols that are not real.
            """))

    # make vanilla symbol real
    recast = {
        i: Dummy(i.name, extended_real=True)
        for i in gens if i.is_extended_real is None
    }
    inequalities = [i.xreplace(recast) for i in inequalities]
    symbols = {i.xreplace(recast) for i in symbols}

    # prefilter
    keep = []
    for i in inequalities:
        if isinstance(i, Relational):
            i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
        elif i not in (True, False):
            i = Eq(i, 0)
        if i == True:
            continue
        elif i == False:
            return S.false
        if i.lhs.is_number:
            raise NotImplementedError("could not determine truth value of %s" %
                                      i)
        keep.append(i)
    inequalities = keep
    del keep

    # solve system
    rv = _reduce_inequalities(inequalities, symbols)

    # restore original symbols and return
    return rv.xreplace({v: k for k, v in recast.items()})
Exemple #38
0
 def __str__(self):
     return '\n%s\n' % filldedent(self.fullMessage)
Exemple #39
0
def banded(*args, **kwargs):
    """Returns a SparseMatrix from the given dictionary describing
    the diagonals of the matrix. The keys are positive for upper
    diagonals and negative for those below the main diagonal. The
    values may be:
        * expressions or single-argument functions,
        * lists or tuples of values,
        * matrices
    Unless dimensions are given, the size of the returned matrix will
    be large enough to contain the largest non-zero value provided.

    kwargs
    ======

    rows : rows of the resulting matrix; computed if
           not given.

    cols : columns of the resulting matrix; computed if
           not given.

    Examples
    ========

    >>> from sympy import banded, ones, Matrix
    >>> from sympy.abc import x

    If explicit values are given in tuples,
    the matrix will autosize to contain all values, otherwise
    a single value is filled onto the entire diagonal:

    >>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x})
    Matrix([
    [x, 1, 0, 0],
    [4, x, 2, 0],
    [0, 5, x, 3],
    [0, 0, 6, x]])

    A function accepting a single argument can be used to fill the
    diagonal as a function of diagonal index (which starts at 0).
    The size (or shape) of the matrix must be given to obtain more
    than a 1x1 matrix:

    >>> s = lambda d: (1 + d)**2
    >>> banded(5, {0: s, 2: s, -2: 2})
    Matrix([
    [1, 0, 1,  0,  0],
    [0, 4, 0,  4,  0],
    [2, 0, 9,  0,  9],
    [0, 2, 0, 16,  0],
    [0, 0, 2,  0, 25]])

    The diagonal of matrices placed on a diagonal will coincide
    with the indicated diagonal:

    >>> vert = Matrix([1, 2, 3])
    >>> banded({0: vert}, cols=3)
    Matrix([
    [1, 0, 0],
    [2, 1, 0],
    [3, 2, 1],
    [0, 3, 2],
    [0, 0, 3]])

    >>> banded(4, {0: ones(2)})
    Matrix([
    [1, 1, 0, 0],
    [1, 1, 0, 0],
    [0, 0, 1, 1],
    [0, 0, 1, 1]])

    Errors are raised if the designated size will not hold
    all values an integral number of times. Here, the rows
    are designated as odd (but an even number is required to
    hold the off-diagonal 2x2 ones):

    >>> banded({0: 2, 1: ones(2)}, rows=5)
    Traceback (most recent call last):
    ...
    ValueError:
    sequence does not fit an integral number of times in the matrix

    And here, an even number of rows is given...but the square
    matrix has an even number of columns, too. As we saw
    in the previous example, an odd number is required:

    >>> banded(4, {0: 2, 1: ones(2)})  # trying to make 4x4 and cols must be odd
    Traceback (most recent call last):
    ...
    ValueError:
    sequence does not fit an integral number of times in the matrix

    A way around having to count rows is to enclosing matrix elements
    in a tuple and indicate the desired number of them to the right:

    >>> banded({0: 2, 2: (ones(2),)*3})
    Matrix([
    [2, 0, 1, 1, 0, 0, 0, 0],
    [0, 2, 1, 1, 0, 0, 0, 0],
    [0, 0, 2, 0, 1, 1, 0, 0],
    [0, 0, 0, 2, 1, 1, 0, 0],
    [0, 0, 0, 0, 2, 0, 1, 1],
    [0, 0, 0, 0, 0, 2, 1, 1]])

    An error will be raised if more than one value
    is written to a given entry. Here, the ones overlap
    with the main diagonal if they are placed on the
    first diagonal:

    >>> banded({0: (2,)*5, 1: (ones(2),)*3})
    Traceback (most recent call last):
    ...
    ValueError: collision at (1, 1)

    By placing a 0 at the bottom left of the 2x2 matrix of
    ones, the collision is avoided:

    >>> u2 = Matrix([
    ... [1, 1],
    ... [0, 1]])
    >>> banded({0: [2]*5, 1: [u2]*3})
    Matrix([
    [2, 1, 1, 0, 0, 0, 0],
    [0, 2, 1, 0, 0, 0, 0],
    [0, 0, 2, 1, 1, 0, 0],
    [0, 0, 0, 2, 1, 0, 0],
    [0, 0, 0, 0, 2, 1, 1],
    [0, 0, 0, 0, 0, 0, 1]])
    """
    from sympy import Dict, Dummy, SparseMatrix

    try:
        if len(args) not in (1, 2, 3):
            raise TypeError
        if not isinstance(args[-1], (dict, Dict)):
            raise TypeError
        if len(args) == 1:
            rows = kwargs.get("rows", None)
            cols = kwargs.get("cols", None)
            if rows is not None:
                rows = as_int(rows)
            if cols is not None:
                cols = as_int(cols)
        elif len(args) == 2:
            rows = cols = as_int(args[0])
        else:
            rows, cols = map(as_int, args[:2])
        # fails with ValueError if any keys are not ints
        _ = all(as_int(k) for k in args[-1])
    except (ValueError, TypeError):
        raise TypeError(
            filldedent("""unrecognized input to banded:
            expecting [[row,] col,] {int: value}"""))

    def rc(d):
        # return row,col coord of diagonal start
        r = -d if d < 0 else 0
        c = 0 if r else d
        return r, c

    smat = {}
    undone = []
    tba = Dummy()
    # first handle objects with size
    for d, v in args[-1].items():
        r, c = rc(d)
        # note: only list and tuple are recognized since this
        # will allow other Basic objects like Tuple
        # into the matrix if so desired
        if isinstance(v, (list, tuple)):
            extra = 0
            for i, vi in enumerate(v):
                i += extra
                if is_sequence(vi):
                    vi = SparseMatrix(vi)
                    smat[r + i, c + i] = vi
                    extra += min(vi.shape) - 1
                else:
                    smat[r + i, c + i] = vi
        elif is_sequence(v):
            v = SparseMatrix(v)
            rv, cv = v.shape
            if rows and cols:
                nr, xr = divmod(rows - r, rv)
                nc, xc = divmod(cols - c, cv)
                x = xr or xc
                do = min(nr, nc)
            elif rows:
                do, x = divmod(rows - r, rv)
            elif cols:
                do, x = divmod(cols - c, cv)
            else:
                do = 1
                x = 0
            if x:
                raise ValueError(
                    filldedent("""
                    sequence does not fit an integral number of times
                    in the matrix"""))
            j = min(v.shape)
            for i in range(do):
                smat[r, c] = v
                r += j
                c += j
        elif v:
            smat[r, c] = tba
            undone.append((d, v))
    s = SparseMatrix(None, smat)  # to expand matrices
    smat = s._smat
    # check for dim errors here
    if rows is not None and rows < s.rows:
        raise ValueError("Designated rows %s < needed %s" % (rows, s.rows))
    if cols is not None and cols < s.cols:
        raise ValueError("Designated cols %s < needed %s" % (cols, s.cols))
    if rows is cols is None:
        rows = s.rows
        cols = s.cols
    elif rows is not None and cols is None:
        cols = max(rows, s.cols)
    elif cols is not None and rows is None:
        rows = max(cols, s.rows)

    def update(i, j, v):
        # update smat and make sure there are
        # no collisions
        if v:
            if (i, j) in smat and smat[i, j] not in (tba, v):
                raise ValueError("collision at %s" % ((i, j), ))
            smat[i, j] = v

    if undone:
        for d, vi in undone:
            r, c = rc(d)
            v = vi if callable(vi) else lambda _: vi
            i = 0
            while r + i < rows and c + i < cols:
                update(r + i, c + i, v(i))
                i += 1
    return SparseMatrix(rows, cols, smat)
Exemple #40
0
def checkpdesol(pde, sol, func=None, solve_for_func=True):
    """
    Checks if the given solution satisfies the partial differential
    equation.

    pde is the partial differential equation which can be given in the
    form of an equation or an expression. sol is the solution for which
    the pde is to be checked. This can also be given in an equation or
    an expression form. If the function is not provided, the helper
    function _preprocess from deutils is used to identify the function.

    If a sequence of solutions is passed, the same sort of container will be
    used to return the result for each solution.

    The following methods are currently being implemented to check if the
    solution satisfies the PDE:

        1. Directly substitute the solution in the PDE and check. If the
           solution hasn't been solved for f, then it will solve for f
           provided solve_for_func hasn't been set to False.

    If the solution satisfies the PDE, then a tuple (True, 0) is returned.
    Otherwise a tuple (False, expr) where expr is the value obtained
    after substituting the solution in the PDE. However if a known solution
    returns False, it may be due to the inability of doit() to simplify it to zero.

    Examples
    ========

    >>> from sympy import Function, symbols
    >>> from sympy.solvers.pde import checkpdesol, pdsolve
    >>> x, y = symbols('x y')
    >>> f = Function('f')
    >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y)
    >>> sol = pdsolve(eq)
    >>> assert checkpdesol(eq, sol)[0]
    >>> eq = x*f(x,y) + f(x,y).diff(x)
    >>> checkpdesol(eq, sol)
    (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25))
    """

    # Converting the pde into an equation
    if not isinstance(pde, Equality):
        pde = Eq(pde, 0)

    # If no function is given, try finding the function present.
    if func is None:
        try:
            _, func = _preprocess(pde.lhs)
        except ValueError:
            funcs = [
                s.atoms(AppliedUndef)
                for s in (sol if is_sequence(sol, set) else [sol])
            ]
            funcs = set().union(funcs)
            if len(funcs) != 1:
                raise ValueError(
                    'must pass func arg to checkpdesol for this case.')
            func = funcs.pop()

    # If the given solution is in the form of a list or a set
    # then return a list or set of tuples.
    if is_sequence(sol, set):
        return type(sol)([
            checkpdesol(pde, i, func=func, solve_for_func=solve_for_func)
            for i in sol
        ])

    # Convert solution into an equation
    if not isinstance(sol, Equality):
        sol = Eq(func, sol)
    elif sol.rhs == func:
        sol = sol.reversed

    # Try solving for the function
    solved = sol.lhs == func and not sol.rhs.has(func)
    if solve_for_func and not solved:
        solved = solve(sol, func)
        if solved:
            if len(solved) == 1:
                return checkpdesol(pde,
                                   Eq(func, solved[0]),
                                   func=func,
                                   solve_for_func=False)
            else:
                return checkpdesol(pde, [Eq(func, t) for t in solved],
                                   func=func,
                                   solve_for_func=False)

    # try direct substitution of the solution into the PDE and simplify
    if sol.lhs == func:
        pde = pde.lhs - pde.rhs
        s = simplify(pde.subs(func, sol.rhs).doit())
        return s is S.Zero, s

    raise NotImplementedError(
        filldedent('''
        Unable to test if %s is a solution to %s.''' % (sol, pde)))
Exemple #41
0
def reduce_abs_inequality(expr, rel, gen):
    """Reduce an inequality with nested absolute values.

    Examples
    ========

    >>> from sympy import Abs, Symbol
    >>> from sympy.solvers.inequalities import reduce_abs_inequality
    >>> x = Symbol('x', real=True)

    >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
    (2 < x) & (x < 8)

    >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
    (-19/3 < x) & (x < 7/3)

    See Also
    ========

    reduce_abs_inequalities
    """
    if gen.is_extended_real is False:
        raise TypeError(
            filldedent("""
            can't solve inequalities with absolute values containing
            non-real variables.
            """))

    def _bottom_up_scan(expr):
        exprs = []

        if expr.is_Add or expr.is_Mul:
            op = expr.func

            for arg in expr.args:
                _exprs = _bottom_up_scan(arg)

                if not exprs:
                    exprs = _exprs
                else:
                    args = []

                    for expr, conds in exprs:
                        for _expr, _conds in _exprs:
                            args.append((op(expr, _expr), conds + _conds))

                    exprs = args
        elif expr.is_Pow:
            n = expr.exp
            if not n.is_Integer:
                raise ValueError("Only Integer Powers are allowed on Abs.")

            _exprs = _bottom_up_scan(expr.base)

            for expr, conds in _exprs:
                exprs.append((expr**n, conds))
        elif isinstance(expr, Abs):
            _exprs = _bottom_up_scan(expr.args[0])

            for expr, conds in _exprs:
                exprs.append((expr, conds + [Ge(expr, 0)]))
                exprs.append((-expr, conds + [Lt(expr, 0)]))
        else:
            exprs = [(expr, [])]

        return exprs

    exprs = _bottom_up_scan(expr)

    mapping = {"<": ">", "<=": ">="}
    inequalities = []

    for expr, conds in exprs:
        if rel not in mapping.keys():
            expr = Relational(expr, 0, rel)
        else:
            expr = Relational(-expr, 0, mapping[rel])

        inequalities.append([expr] + conds)

    return reduce_rational_inequalities(inequalities, gen)
Exemple #42
0
    def eval(cls, *_args):
        """Either return a modified version of the args or, if no
        modifications were made, return None.

        Modifications that are made here:
        1) relationals are made canonical
        2) any False conditions are dropped
        3) any repeat of a previous condition is ignored
        3) any args past one with a true condition are dropped

        If there are no args left, an empty Piecewise will be returned.
        If there is a single arg with a True condition, its
        corresponding expression will be returned.
        """

        if not _args:
            return

        if len(_args) == 1 and _args[0][-1] == True:
            return _args[0][0]

        newargs = []  # the unevaluated conditions
        current_cond = set()  # the conditions up to a given e, c pair
        # make conditions canonical
        args = []
        for e, c in _args:
            if not c.is_Atom and not isinstance(c, Relational):
                free = c.free_symbols
                if len(free) == 1:
                    funcs = [i for i in c.atoms(Function)
                        if not isinstance(i, Boolean)]
                    if len(funcs) == 1 and len(
                            c.xreplace({list(funcs)[0]: Dummy()}
                            ).free_symbols) == 1:
                        # we can treat function like a symbol
                        free = funcs
                    _c = c
                    x = free.pop()
                    try:
                        c = c.as_set().as_relational(x)
                    except NotImplementedError:
                        pass
                    else:
                        reps = {}
                        for i in c.atoms(Relational):
                            ic = i.canonical
                            if ic.rhs in (S.Infinity, S.NegativeInfinity):
                                if not _c.has(ic.rhs):
                                    # don't accept introduction of
                                    # new Relationals with +/-oo
                                    reps[i] = S.true
                                elif ('=' not in ic.rel_op and
                                        c.xreplace({x: i.rhs}) !=
                                        _c.xreplace({x: i.rhs})):
                                    reps[i] = Relational(
                                        i.lhs, i.rhs, i.rel_op + '=')
                        c = c.xreplace(reps)
            args.append((e, _canonical(c)))

        for expr, cond in args:
            # Check here if expr is a Piecewise and collapse if one of
            # the conds in expr matches cond. This allows the collapsing
            # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)).
            # This is important when using piecewise_fold to simplify
            # multiple Piecewise instances having the same conds.
            # Eventually, this code should be able to collapse Piecewise's
            # having different intervals, but this will probably require
            # using the new assumptions.
            if isinstance(expr, Piecewise):
                unmatching = []
                for i, (e, c) in enumerate(expr.args):
                    if c in current_cond:
                        # this would already have triggered
                        continue
                    if c == cond:
                        if c != True:
                            # nothing past this condition will ever
                            # trigger and only those args before this
                            # that didn't match a previous condition
                            # could possibly trigger
                            if unmatching:
                                expr = Piecewise(*(
                                    unmatching + [(e, c)]))
                            else:
                                expr = e
                        break
                    else:
                        unmatching.append((e, c))

            # check for condition repeats
            got = False
            # -- if an And contains a condition that was
            #    already encountered, then the And will be
            #    False: if the previous condition was False
            #    then the And will be False and if the previous
            #    condition is True then then we wouldn't get to
            #    this point. In either case, we can skip this condition.
            for i in ([cond] +
                    (list(cond.args) if isinstance(cond, And) else
                    [])):
                if i in current_cond:
                    got = True
                    break
            if got:
                continue

            # -- if not(c) is already in current_cond then c is
            #    a redundant condition in an And. This does not
            #    apply to Or, however: (e1, c), (e2, Or(~c, d))
            #    is not (e1, c), (e2, d) because if c and d are
            #    both False this would give no results when the
            #    true answer should be (e2, True)
            if isinstance(cond, And):
                nonredundant = []
                for c in cond.args:
                    if (isinstance(c, Relational) and
                            (~c).canonical in current_cond):
                        continue
                    nonredundant.append(c)
                cond = cond.func(*nonredundant)
            elif isinstance(cond, Relational):
                if (~cond).canonical in current_cond:
                    cond = S.true

            current_cond.add(cond)

            # collect successive e,c pairs when exprs or cond match
            if newargs:
                if newargs[-1].expr == expr:
                    orcond = Or(cond, newargs[-1].cond)
                    if isinstance(orcond, (And, Or)):
                        orcond = distribute_and_over_or(orcond)
                    newargs[-1] = ExprCondPair(expr, orcond)
                    continue
                elif newargs[-1].cond == cond:
                    orexpr = Or(expr, newargs[-1].expr)
                    if isinstance(orexpr, (And, Or)):
                        orexpr = distribute_and_over_or(orexpr)
                    newargs[-1] == ExprCondPair(orexpr, cond)
                    continue

            newargs.append(ExprCondPair(expr, cond))

        # some conditions may have been redundant
        missing = len(newargs) != len(_args)
        # some conditions may have changed
        same = all(a == b for a, b in zip(newargs, _args))
        # if either change happened we return the expr with the
        # updated args
        if not newargs:
            raise ValueError(filldedent('''
                There are no conditions (or none that
                are not trivially false) to define an
                expression.'''))
        if missing or not same:
            return cls(*newargs)
Exemple #43
0
def reduce_rational_inequalities(exprs, gen, relational=True):
    """Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly, Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    -2 < x
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    -2 < x
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)

    This function find the non-infinite solution set so if the unknown symbol
    is declared as extended real rather than real then the result may include
    finiteness conditions:

    >>> y = Symbol('y', extended_real=True)
    >>> reduce_rational_inequalities([[y + 2 > 0]], y)
    (-2 < y) & (y < oo)
    """
    exact = True
    eqs = []
    solution = S.Reals if exprs else S.EmptySet
    for _exprs in exprs:
        _eqs = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, "=="

            if expr is S.true:
                numer, denom, rel = S.Zero, S.One, "=="
            elif expr is S.false:
                numer, denom, rel = S.One, S.One, "=="
            else:
                numer, denom = expr.together().as_numer_denom()

            try:
                (numer, denom), opt = parallel_poly_from_expr((numer, denom),
                                                              gen)
            except PolynomialError:
                raise PolynomialError(
                    filldedent("""
                    only polynomials and rational functions are
                    supported in this context.
                    """))

            if not opt.domain.is_Exact:
                numer, denom, exact = numer.to_exact(), denom.to_exact(), False

            domain = opt.domain.get_exact()

            if not (domain.is_ZZ or domain.is_QQ):
                expr = numer / denom
                expr = Relational(expr, 0, rel)
                solution &= solve_univariate_inequality(expr,
                                                        gen,
                                                        relational=False)
            else:
                _eqs.append(((numer, denom), rel))

        if _eqs:
            eqs.append(_eqs)

    if eqs:
        solution &= solve_rational_inequalities(eqs)
        exclude = solve_rational_inequalities([[((d, d.one), "==") for i in eqs
                                                for ((n, d), _) in i
                                                if d.has(gen)]])
        solution -= exclude

    if not exact and solution:
        solution = solution.evalf()

    if relational:
        solution = solution.as_relational(gen)

    return solution
Exemple #44
0
    move(git_people, 79, 76, 'Kevin Goodsell')
    git_people.insert(84, "*Chu-Ching Huang <*****@*****.**>")
    move(git_people, 93, 92, 'James Pearson')
    # this will fail if the .mailmap is not right
    assert 'Sergey B Kirpichev' == author_name(git_people.pop(226)
        ), 'Sergey B Kirpichev was not found at line 226.'
except AssertionError as msg:
    print(red(msg))
    sys.exit(1)

# define new lines for the file

header = filldedent("""
    All people who contributed to SymPy by sending at least a patch or
    more (in the order of the date of their first contribution), except
    those who explicitly didn't want to be mentioned. People with a * next
    to their names are not found in the metadata of the git history. This
    file is generated automatically by running `./bin/authors_update.py`.
    """).lstrip()
fmt = """There are a total of {authors_count} authors."""
header_extra = fmt.format(authors_count=len(git_people))
lines = header.splitlines()
lines.append('')
lines.append(header_extra)
lines.append('')
lines.extend(git_people)

# compare to old lines and stop if no changes were made

old_lines = codecs.open(os.path.realpath(os.path.join(
        __file__, os.path.pardir, os.path.pardir, "AUTHORS")),
Exemple #45
0
    def __new__(cls, *args, **kwargs):
        self = object.__new__(cls)
        if len(args) == 1 and isinstance(args[0], SparseMatrix):
            self.rows = args[0].rows
            self.cols = args[0].cols
            self._smat = dict(args[0]._smat)
            return self

        self._smat = {}

        # autosizing
        if len(args) == 2 and args[0] is None:
            args = (None, ) + args
        if len(args) == 3:
            r, c = args[:2]
            if r is c is None:
                self.rows = self.cols = None
            elif None in (r, c):
                raise ValueError('Pass rows=None and no cols for autosizing.')
            else:
                self.rows, self.cols = map(as_int, args[:2])

            if isinstance(args[2], Callable):
                op = args[2]
                for i in range(self.rows):
                    for j in range(self.cols):
                        value = self._sympify(
                            op(self._sympify(i), self._sympify(j)))
                        if value:
                            self._smat[i, j] = value
            elif isinstance(args[2], (dict, Dict)):

                def update(i, j, v):
                    # update self._smat and make sure there are
                    # no collisions
                    if v:
                        if (i, j) in self._smat and v != self._smat[i, j]:
                            raise ValueError('collision at %s' % ((i, j), ))
                        self._smat[i, j] = v

                # manual copy, copy.deepcopy() doesn't work
                for key, v in args[2].items():
                    r, c = key
                    if isinstance(v, SparseMatrix):
                        for (i, j), vij in v._smat.items():
                            update(r + i, c + j, vij)
                    else:
                        if isinstance(v, (Matrix, list, tuple)):
                            v = SparseMatrix(v)
                            for i, j in v._smat:
                                update(r + i, c + j, v[i, j])
                        else:
                            v = self._sympify(v)
                            update(r, c, self._sympify(v))
            elif is_sequence(args[2]):
                flat = not any(is_sequence(i) for i in args[2])
                if not flat:
                    s = SparseMatrix(args[2])
                    self._smat = s._smat
                else:
                    if len(args[2]) != self.rows * self.cols:
                        raise ValueError(
                            'Flat list length (%s) != rows*columns (%s)' %
                            (len(args[2]), self.rows * self.cols))
                    flat_list = args[2]
                    for i in range(self.rows):
                        for j in range(self.cols):
                            value = self._sympify(flat_list[i * self.cols + j])
                            if value:
                                self._smat[i, j] = value
            if self.rows is None:  # autosizing
                k = self._smat.keys()
                self.rows = max([i[0] for i in k]) + 1 if k else 0
                self.cols = max([i[1] for i in k]) + 1 if k else 0
            else:
                for i, j in self._smat.keys():
                    if i and i >= self.rows or j and j >= self.cols:
                        r, c = self.shape
                        raise ValueError(
                            filldedent('''
                            The location %s is out of designated
                            range: %s''' % ((i, j), (r - 1, c - 1))))
        else:
            if (len(args) == 1 and isinstance(args[0], (list, tuple))):
                # list of values or lists
                v = args[0]
                c = 0
                for i, row in enumerate(v):
                    if not isinstance(row, (list, tuple)):
                        row = [row]
                    for j, vij in enumerate(row):
                        if vij:
                            self._smat[i, j] = self._sympify(vij)
                    c = max(c, len(row))
                self.rows = len(v) if c else 0
                self.cols = c
            else:
                # handle full matrix forms with _handle_creation_inputs
                r, c, _list = Matrix._handle_creation_inputs(*args)
                self.rows = r
                self.cols = c
                for i in range(self.rows):
                    for j in range(self.cols):
                        value = _list[self.cols * i + j]
                        if value:
                            self._smat[i, j] = value
        return self
Exemple #46
0
    def __new__(cls, *args, **kwargs):
        evaluate = kwargs.get('evaluate', global_evaluate[0])
        on_morph = kwargs.get('on_morph', 'ignore')

        # unpack into coords
        coords = args[0] if len(args) == 1 else args

        # check args and handle quickly handle Point instances
        if isinstance(coords, Point):
            # even if we're mutating the dimension of a point, we
            # don't reevaluate its coordinates
            evaluate = False
            if len(coords) == kwargs.get('dim', len(coords)):
                return coords

        if not is_sequence(coords):
            raise TypeError(
                filldedent('''
                Expecting sequence of coordinates, not `{}`'''.format(
                    func_name(coords))))
        # A point where only `dim` is specified is initialized
        # to zeros.
        if len(coords) == 0 and kwargs.get('dim', None):
            coords = (S.Zero, ) * kwargs.get('dim')

        coords = Tuple(*coords)
        dim = kwargs.get('dim', len(coords))

        if len(coords) < 2:
            raise ValueError(
                filldedent('''
                Point requires 2 or more coordinates or
                keyword `dim` > 1.'''))
        if len(coords) != dim:
            message = ("Dimension of {} needs to be changed "
                       "from {} to {}.").format(coords, len(coords), dim)
            if on_morph == 'ignore':
                pass
            elif on_morph == "error":
                raise ValueError(message)
            elif on_morph == 'warn':
                warnings.warn(message)
            else:
                raise ValueError(
                    filldedent('''
                        on_morph value should be 'error',
                        'warn' or 'ignore'.'''))
        if any(coords[dim:]):
            raise ValueError('Nonzero coordinates cannot be removed.')
        if any(a.is_number and im(a) for a in coords):
            raise ValueError('Imaginary coordinates are not permitted.')
        if not all(isinstance(a, Expr) for a in coords):
            raise TypeError('Coordinates must be valid SymPy expressions.')

        # pad with zeros appropriately
        coords = coords[:dim] + (S.Zero, ) * (dim - len(coords))

        # Turn any Floats into rationals and simplify
        # any expressions before we instantiate
        if evaluate:
            coords = coords.xreplace(
                dict([(f, simplify(nsimplify(f, rational=True)))
                      for f in coords.atoms(Float)]))

        # return 2D or 3D instances
        if len(coords) == 2:
            kwargs['_nocheck'] = True
            return Point2D(*coords, **kwargs)
        elif len(coords) == 3:
            kwargs['_nocheck'] = True
            return Point3D(*coords, **kwargs)

        # the general Point
        return GeometryEntity.__new__(cls, *coords)
Exemple #47
0
def linodesolve_type(A, t, b=None):
    r"""
    Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`

    Explanation
    ===========

    This function takes in the coefficient matrix and/or the non-homogeneous term
    and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.

    If the system is constant coefficient homogeneous, then "type1" is returned
    If the system is constant coefficient non-homogeneous, then "type2" is returned
    If the system is non-constant coefficient homogeneous, then "type3" is returned
    If the system is non-constnt coefficient non-homogeneous, then "type4" is returned

    Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
    the commutative antiderivative of the coefficient matrix is also returned.

    If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
    NotImplementedError is raised.

    Parameters
    ==========

    A : Matrix
        Coefficient matrix of the system of ODEs
    b : Matrix or None
        Non-homogeneous term of the system. The default value is None.
        If this argument is None, then the system is assumed to be homogeneous.

    Examples
    ========

    >>> from sympy import symbols, Matrix
    >>> from sympy.solvers.ode.systems import linodesolve_type
    >>> t = symbols("t")
    >>> A = Matrix([[1, 1], [2, 3]])
    >>> b = Matrix([t, 1])

    >>> linodesolve_type(A, t)
    {'antiderivative': None, 'type': 'type1'}

    >>> linodesolve_type(A, t, b=b)
    {'antiderivative': None, 'type': 'type2'}

    >>> A_t = Matrix([[1, t], [-t, 1]])

    >>> linodesolve_type(A_t, t)
    {'antiderivative': Matrix([
    [      t, t**2/2],
    [-t**2/2,      t]]), 'type': 'type3'}

    >>> linodesolve_type(A_t, t, b=b)
    {'antiderivative': Matrix([
    [      t, t**2/2],
    [-t**2/2,      t]]), 'type': 'type4'}

    >>> A_non_commutative = Matrix([[1, t], [t, -1]])
    >>> linodesolve_type(A_non_commutative, t)
    Traceback (most recent call last):
    ...
    NotImplementedError:
    The system doesn't have a commutative antiderivative, it can't be
    solved by linodesolve.

    Returns
    =======

    Dict

    Raises
    ======

    NotImplementedError
        When the coefficient matrix doesn't have a commutative antiderivative

    See Also
    ========

    linodesolve: Function for which linodesolve_type gets the information

    """

    is_non_constant = not _matrix_is_constant(A, t)
    is_non_homogeneous = not (b is None or b.is_zero_matrix)
    type = "type{}".format(
        int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) +
        1)

    B = None
    if is_non_constant:
        B, is_commuting = _is_commutative_anti_derivative(A, t)
        if not is_commuting:
            raise NotImplementedError(
                filldedent('''
                The system doesn't have a commutative antiderivative, it can't be solved
                by linodesolve.
            '''))

    return {"type": type, "antiderivative": B}
Exemple #48
0
def parse_expr(s,
               local_dict=None,
               transformations=standard_transformations,
               global_dict=None,
               evaluate=True):
    """Converts the string ``s`` to a SymPy expression, in ``local_dict``

    Parameters
    ==========

    s : str
        The string to parse.

    local_dict : dict, optional
        A dictionary of local variables to use when parsing.

    global_dict : dict, optional
        A dictionary of global variables. By default, this is initialized
        with ``from sympy import *``; provide this parameter to override
        this behavior (for instance, to parse ``"Q & S"``).

    transformations : tuple, optional
        A tuple of transformation functions used to modify the tokens of the
        parsed expression before evaluation. The default transformations
        convert numeric literals into their SymPy equivalents, convert
        undefined variables into SymPy symbols, and allow the use of standard
        mathematical factorial notation (e.g. ``x!``).

    evaluate : bool, optional
        When False, the order of the arguments will remain as they were in the
        string and automatic simplification that would normally occur is
        suppressed. (see examples)

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import parse_expr
    >>> parse_expr("1/2")
    1/2
    >>> type(_)
    <class 'sympy.core.numbers.Half'>
    >>> from sympy.parsing.sympy_parser import standard_transformations,\\
    ... implicit_multiplication_application
    >>> transformations = (standard_transformations +
    ...     (implicit_multiplication_application,))
    >>> parse_expr("2x", transformations=transformations)
    2*x

    When evaluate=False, some automatic simplifications will not occur:

    >>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
    (8, 2**3)

    In addition the order of the arguments will not be made canonical.
    This feature allows one to tell exactly how the expression was entered:

    >>> a = parse_expr('1 + x', evaluate=False)
    >>> b = parse_expr('x + 1', evaluate=0)
    >>> a == b
    False
    >>> a.args
    (1, x)
    >>> b.args
    (x, 1)

    See Also
    ========

    stringify_expr, eval_expr, standard_transformations,
    implicit_multiplication_application

    """

    if local_dict is None:
        local_dict = {}
    elif not isinstance(local_dict, dict):
        raise TypeError('expecting local_dict to be a dict')

    if global_dict is None:
        global_dict = {}
        exec('from sympy import *', global_dict)
    elif not isinstance(global_dict, dict):
        raise TypeError('expecting global_dict to be a dict')

    transformations = transformations or ()
    if transformations:
        if not iterable(transformations):
            raise TypeError('`transformations` should be a list of functions.')
        for _ in transformations:
            if not callable(_):
                raise TypeError(
                    filldedent('''
                    expected a function in `transformations`,
                    not %s''' % func_name(_)))
            if arity(_) != 3:
                raise TypeError(
                    filldedent('''
                    a transformation should be function that
                    takes 3 arguments'''))
    code = stringify_expr(s, local_dict, global_dict, transformations)

    if not evaluate:
        code = compile(evaluateFalse(code), '<string>', 'eval')

    try:
        rv = eval_expr(code, local_dict, global_dict)
        # restore neutral definitions for names
        for i in local_dict.pop(None, ()):
            local_dict[i] = None
        return rv
    except Exception as e:
        # restore neutral definitions for names
        for i in local_dict.pop(None, ()):
            local_dict[i] = None
        raise e from ValueError(
            f"Error from parse_expr with transformed code: {code!r}")
Exemple #49
0
 def __init__(self, other, want):
     msg = filldedent("Expected an instance of %s, but received object "
                      "'%s' of %s." % (type(want), other, type(other)))
     super(VectorTypeError, self).__init__(msg)
Exemple #50
0
    def __new__(cls, *args):
        from sympy.functions.elementary.integers import ceiling
        if len(args) == 1:
            if isinstance(args[0], range if PY3 else xrange):
                raise TypeError('use sympify(%s) to convert range to Range' %
                                args[0])

        # expand range
        slc = slice(*args)

        if slc.step == 0:
            raise ValueError("step cannot be 0")

        start, stop, step = slc.start or 0, slc.stop, slc.step or 1
        try:
            ok = []
            for w in (start, stop, step):
                w = sympify(w)
                if w in [S.NegativeInfinity, S.Infinity
                         ] or (w.has(Symbol) and w.is_integer != False):
                    ok.append(w)
                elif not w.is_Integer:
                    raise ValueError
                else:
                    ok.append(w)
        except ValueError:
            raise ValueError(
                filldedent('''
    Finite arguments to Range must be integers; `imageset` can define
    other cases, e.g. use `imageset(i, i/10, Range(3))` to give
    [0, 1/10, 1/5].'''))
        start, stop, step = ok

        null = False
        if any(i.has(Symbol) for i in (start, stop, step)):
            if start == stop:
                null = True
            else:
                end = stop
        elif start.is_infinite:
            span = step * (stop - start)
            if span is S.NaN or span <= 0:
                null = True
            elif step.is_Integer and stop.is_infinite and abs(step) != 1:
                raise ValueError(
                    filldedent('''
                    Step size must be %s in this case.''' %
                               (1 if step > 0 else -1)))
            else:
                end = stop
        else:
            oostep = step.is_infinite
            if oostep:
                step = S.One if step > 0 else S.NegativeOne
            n = ceiling((stop - start) / step)
            if n <= 0:
                null = True
            elif oostep:
                end = start + 1
                step = S.One  # make it a canonical single step
            else:
                end = start + n * step
        if null:
            start = end = S.Zero
            step = S.One
        return Basic.__new__(cls, start, end, step)
Exemple #51
0
 def nonsymfail(cond):
     raise NotImplementedError(filldedent('''
         A condition not involving
         %s appeared: %s''' % (sym, cond)))
Exemple #52
0
def parse_expr(s: str, local_dict: Optional[DICT] = None,
               transformations: tUnion[tTuple[TRANS, ...], str] \
                   = standard_transformations,
               global_dict: Optional[DICT] = None, evaluate=True):
    """Converts the string ``s`` to a SymPy expression, in ``local_dict``

    Parameters
    ==========

    s : str
        The string to parse.

    local_dict : dict, optional
        A dictionary of local variables to use when parsing.

    global_dict : dict, optional
        A dictionary of global variables. By default, this is initialized
        with ``from sympy import *``; provide this parameter to override
        this behavior (for instance, to parse ``"Q & S"``).

    transformations : tuple or str
        A tuple of transformation functions used to modify the tokens of the
        parsed expression before evaluation. The default transformations
        convert numeric literals into their SymPy equivalents, convert
        undefined variables into SymPy symbols, and allow the use of standard
        mathematical factorial notation (e.g. ``x!``). Selection via
        string is available (see below).

    evaluate : bool, optional
        When False, the order of the arguments will remain as they were in the
        string and automatic simplification that would normally occur is
        suppressed. (see examples)

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import parse_expr
    >>> parse_expr("1/2")
    1/2
    >>> type(_)
    <class 'sympy.core.numbers.Half'>
    >>> from sympy.parsing.sympy_parser import standard_transformations,\\
    ... implicit_multiplication_application
    >>> transformations = (standard_transformations +
    ...     (implicit_multiplication_application,))
    >>> parse_expr("2x", transformations=transformations)
    2*x

    When evaluate=False, some automatic simplifications will not occur:

    >>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
    (8, 2**3)

    In addition the order of the arguments will not be made canonical.
    This feature allows one to tell exactly how the expression was entered:

    >>> a = parse_expr('1 + x', evaluate=False)
    >>> b = parse_expr('x + 1', evaluate=0)
    >>> a == b
    False
    >>> a.args
    (1, x)
    >>> b.args
    (x, 1)

    Note, however, that when these expressions are printed they will
    appear the same:

    >>> assert str(a) == str(b)

    As a convenience, transformations can be seen by printing ``transformations``:

    >>> from sympy.parsing.sympy_parser import transformations

    >>> print(transformations)
    0: lambda_notation
    1: auto_symbol
    2: repeated_decimals
    3: auto_number
    4: factorial_notation
    5: implicit_multiplication_application
    6: convert_xor
    7: implicit_application
    8: implicit_multiplication
    9: convert_equals_signs
    10: function_exponentiation
    11: rationalize

    The ``T`` object provides a way to select these transformations:

    >>> from sympy.parsing.sympy_parser import T

    If you print it, you will see the same list as shown above.

    >>> str(T) == str(transformations)
    True

    Standard slicing will return a tuple of transformations:

    >>> T[:5] == standard_transformations
    True

    So ``T`` can be used to specify the parsing transformations:

    >>> parse_expr("2x", transformations=T[:5])
    Traceback (most recent call last):
    ...
    SyntaxError: invalid syntax
    >>> parse_expr("2x", transformations=T[:6])
    2*x
    >>> parse_expr('.3', transformations=T[3, 11])
    3/10
    >>> parse_expr('.3x', transformations=T[:])
    3*x/10

    As a further convenience, strings 'implicit' and 'all' can be used
    to select 0-5 and all the transformations, respectively.

    >>> parse_expr('.3x', transformations='all')
    3*x/10

    See Also
    ========

    stringify_expr, eval_expr, standard_transformations,
    implicit_multiplication_application

    """

    if local_dict is None:
        local_dict = {}
    elif not isinstance(local_dict, dict):
        raise TypeError('expecting local_dict to be a dict')
    elif null in local_dict:
        raise ValueError('cannot use "" in local_dict')

    if global_dict is None:
        global_dict = {}
        exec('from sympy import *', global_dict)

        builtins_dict = vars(builtins)
        for name, obj in builtins_dict.items():
            if isinstance(obj, types.BuiltinFunctionType):
                global_dict[name] = obj
        global_dict['max'] = Max
        global_dict['min'] = Min

    elif not isinstance(global_dict, dict):
        raise TypeError('expecting global_dict to be a dict')

    transformations = transformations or ()
    if isinstance(transformations, str):
        if transformations == 'all':
            _transformations = T[:]
        elif transformations == 'implicit':
            _transformations = T[:6]
        else:
            raise ValueError('unknown transformation group name')
    else:
        _transformations = transformations
    if _transformations:
        if not iterable(_transformations):
            raise TypeError('`transformations` should be a list of functions.')
        for _ in _transformations:
            if not callable(_):
                raise TypeError(
                    filldedent('''
                    expected a function in `transformations`,
                    not %s''' % func_name(_)))
            if arity(_) != 3:
                raise TypeError(
                    filldedent('''
                    a transformation should be function that
                    takes 3 arguments'''))

    code = stringify_expr(s, local_dict, global_dict, _transformations)

    if not evaluate:
        code = compile(evaluateFalse(code), '<string>', 'eval')

    try:
        rv = eval_expr(code, local_dict, global_dict)
        # restore neutral definitions for names
        for i in local_dict.pop(null, ()):
            local_dict[i] = null
        return rv
    except Exception as e:
        # restore neutral definitions for names
        for i in local_dict.pop(null, ()):
            local_dict[i] = null
        raise e from ValueError(
            f"Error from parse_expr with transformed code: {code!r}")
Exemple #53
0
def reduce_rational_inequalities(exprs, gen, relational=True):
    """Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly, Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    (-2 < x) & (x < oo)
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    (-2 < x) & (x < oo)
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)
    """
    exact = True
    eqs = []
    solution = S.Reals if exprs else S.EmptySet
    for _exprs in exprs:
        _eqs = []

        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            if expr is S.true:
                numer, denom, rel = S.Zero, S.One, '=='
            elif expr is S.false:
                numer, denom, rel = S.One, S.One, '=='
            else:
                numer, denom = expr.together().as_numer_denom()

            try:
                (numer, denom), opt = parallel_poly_from_expr(
                    (numer, denom), gen)
            except PolynomialError:
                raise PolynomialError(filldedent('''
                    only polynomials and
                    rational functions are supported in this context'''))

            if not opt.domain.is_Exact:
                numer, denom, exact = numer.to_exact(), denom.to_exact(), False

            domain = opt.domain.get_exact()

            if not (domain.is_ZZ or domain.is_QQ):
                expr = numer/denom
                expr = Relational(expr, 0, rel)
                solution &= solve_univariate_inequality(expr, gen, relational=False)
            else:
                _eqs.append(((numer, denom), rel))

        if _eqs:
            eqs.append(_eqs)

    if eqs:
        solution &= solve_rational_inequalities(eqs)

    if not exact:
        solution = solution.evalf()

    if relational:
        solution = solution.as_relational(gen)

    return solution
Exemple #54
0
    def _contains(self, other):
        from sympy.matrices import Matrix
        from sympy.solvers.solveset import solveset, linsolve
        from sympy.utilities.iterables import is_sequence, iterable, cartes
        L = self.lamda
        if is_sequence(other):
            if not is_sequence(L.expr):
                return S.false
            if len(L.expr) != len(other):
                raise ValueError(
                    filldedent('''
    Dimensions of other and output of Lambda are different.'''))
        elif iterable(other):
            raise ValueError(
                filldedent('''
    `other` should be an ordered object like a Tuple.'''))

        solns = None
        if self._is_multivariate():
            if not is_sequence(L.expr):
                # exprs -> (numer, denom) and check again
                # XXX this is a bad idea -- make the user
                # remap self to desired form
                return other.as_numer_denom() in self.func(
                    Lambda(L.variables, L.expr.as_numer_denom()),
                    self.base_set)
            eqs = [expr - val for val, expr in zip(other, L.expr)]
            variables = L.variables
            free = set(variables)
            if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
                solns = list(
                    linsolve([e - val for e, val in zip(L.expr, other)],
                             variables))
            else:
                syms = [e.free_symbols & free for e in eqs]
                solns = {}
                for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                    if not s:
                        if e != v:
                            return S.false
                        solns[vars[i]] = [v]
                        continue
                    elif len(s) == 1:
                        sy = s.pop()
                        sol = solveset(e, sy)
                        if sol is S.EmptySet:
                            return S.false
                        elif isinstance(sol, FiniteSet):
                            solns[sy] = list(sol)
                        else:
                            raise NotImplementedError
                    else:
                        raise NotImplementedError
                solns = cartes(*[solns[s] for s in variables])
        else:
            x = L.variables[0]
            if isinstance(L.expr, Expr):
                # scalar -> scalar mapping
                solnsSet = solveset(L.expr - other, x)
                if solnsSet.is_FiniteSet:
                    solns = list(solnsSet)
                else:
                    msgset = solnsSet
            else:
                # scalar -> vector
                for e, o in zip(L.expr, other):
                    solns = solveset(e - o, x)
                    if solns is S.EmptySet:
                        return S.false
                    for soln in solns:
                        try:
                            if soln in self.base_set:
                                break  # check next pair
                        except TypeError:
                            if self.base_set.contains(soln.evalf()):
                                break
                    else:
                        return S.false  # never broke so there was no True
                return S.true

        if solns is None:
            raise NotImplementedError(
                filldedent('''
            Determining whether %s contains %s has not
            been implemented.''' % (msgset, other)))
        for soln in solns:
            try:
                if soln in self.base_set:
                    return S.true
            except TypeError:
                return self.base_set.contains(soln.evalf())
        return S.false
Exemple #55
0
def sample(expr,
           condition=None,
           size=(),
           library='scipy',
           numsamples=1,
           **kwargs):
    """
    A realization of the random expression

    Parameters
    ==========

    expr : Expression of random variables
        Expression from which sample is extracted
    condition : Expr containing RandomSymbols
        A conditional expression
    size : int, tuple
        Represents size of each sample in numsamples
    library : str
        - 'scipy' : Sample using scipy
        - 'numpy' : Sample using numpy
        - 'pymc3' : Sample using PyMC3

        Choose any of the available options to sample from as string,
        by default is 'scipy'
    numsamples : int
        Number of samples, each with size as ``size``

    Examples
    ========

    >>> from sympy.stats import Die, sample, Normal
    >>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)

    >>> die_roll = sample(X + Y + Z) # doctest: +SKIP
    >>> N = Normal('N', 3, 4)
    >>> samp = next(sample(N)) # doctest: +SKIP
    >>> samp in N.pspace.domain.set # doctest: +SKIP
    True
    >>> samp = next(sample(N, N>0)) # doctest: +SKIP
    >>> samp > 0 # doctest: +SKIP
    True
    >>> samp_list = next(sample(N, size=4)) # doctest: +SKIP
    >>> [sam in N.pspace.domain.set for sam in samp_list] # doctest: +SKIP
    [True, True, True, True]

    Returns
    =======

    sample: iterator object
        iterator object containing the sample/samples of given expr

    """
    message = ("The return type of sample has been changed to return an "
               "iterator object since version 1.7. For more information see "
               "https://github.com/sympy/sympy/issues/19061")
    warnings.warn(filldedent(message))
    return sample_iter(expr,
                       condition,
                       size=size,
                       library=library,
                       numsamples=numsamples)