Exemple #1
0
def test_issue_10285():
    assert FiniteSet(-x - 1).intersect(Interval.Ropen(1, 2)) == FiniteSet(x).intersect(Interval.Lopen(-3, -2))
    eq = -x - 2 * (-x - y)
    s = signsimp(eq)
    ivl = Interval.open(0, 1)
    assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(ivl)
    assert FiniteSet(-eq).intersect(ivl) == FiniteSet(s).intersect(Interval.open(-1, 0))
    eq -= 1
    ivl = Interval.Lopen(1, oo)
    assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(Interval.Lopen(2, oo))
def test_reduce_rational_inequalities_real_relational():
    assert reduce_rational_inequalities([], x) == False
    assert reduce_rational_inequalities(
        [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
        Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))

    assert reduce_rational_inequalities(
        [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
        relational=False) == \
        Union(Interval.open(-5, 2), Interval.open(2, 3))

    assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
        relational=False) == \
        Interval.Ropen(-1, 5)

    assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
        relational=False) == \
        Union(Interval.open(-3, -1), Interval.open(1, oo))

    assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
        relational=False) == \
        Union(Interval.open(-4, 1), Interval.open(1, 4))

    assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
        relational=False) == \
        Union(Interval.open(-oo, -4), Interval.Ropen(S(3)/2, oo))

    assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
        relational=False) == \
        Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))

    # issue sympy/sympy#10237
    assert reduce_rational_inequalities([[x < oo, x >= 0, -oo < x]],
                                        x,
                                        relational=False) == Interval(0, oo)
def test_reduce_rational_inequalities_real_relational():
    assert reduce_rational_inequalities([], x) == False
    assert reduce_rational_inequalities(
        [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
        Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))

    assert reduce_rational_inequalities(
        [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
        relational=False) == \
        Union(Interval.open(-5, 2), Interval.open(2, 3))

    assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
        relational=False) == \
        Interval.Ropen(-1, 5)

    assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
        relational=False) == \
        Union(Interval.open(-3, -1), Interval.open(1, oo))

    assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
        relational=False) == \
        Union(Interval.open(-4, 1), Interval.open(1, 4))

    assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
        relational=False) == \
        Union(Interval.open(-oo, -4), Interval.Ropen(S(3)/2, oo))

    assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
        relational=False) == \
        Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))

    # issue sympy/sympy#10237
    assert reduce_rational_inequalities(
        [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
Exemple #4
0
def test_issue_10285():
    assert FiniteSet(-x - 1).intersect(Interval.Ropen(1, 2)) == \
        FiniteSet(x).intersect(Interval.Lopen(-3, -2))
    eq = -x - 2 * (-x - y)
    s = signsimp(eq)
    ivl = Interval.open(0, 1)
    assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(ivl)
    assert FiniteSet(-eq).intersect(ivl) == \
        FiniteSet(s).intersect(Interval.open(-1, 0))
    eq -= 1
    ivl = Interval.Lopen(1, oo)
    assert FiniteSet(eq).intersect(ivl) == \
        FiniteSet(s).intersect(Interval.Lopen(2, oo))
Exemple #5
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2 * Abs(x - 3), x) == FiniteSet(1, 9)
    assert solveset_real(2 * Abs(x) - Abs(x - 1), x) == FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3, domain=S.Reals) == Interval(-1, 2)

    # issue #10069
    eq = abs(1 / (x - 1)) - 1 > 0
    u = Union(Interval.open(0, 1), Interval.open(1, 2))
    assert solveset_real(eq, x) == u
    assert solveset(eq, x, domain=S.Reals) == u

    raises(ValueError, lambda: solveset(abs(x) - 1, x))
Exemple #6
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565
    assert solveset_real(Abs((x - 1)/(x - 5)) <= S(1)/3, x) == Interval(-1, 2)

    # issue #10069
    eq = abs(1/(x - 1)) - 1 > 0
    u = Union(Interval.open(0, 1), Interval.open(1, 2))
    assert solveset_real(eq, x) == u
    assert solveset(eq, x, domain=S.Reals) == u

    raises(ValueError, lambda: solveset(abs(x) - 1, x))
Exemple #7
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1)/(x - 5)) <= S(1)/3, domain=S.Reals
        ) == Interval(-1, 2)

    # issue #10069
    assert solveset_real(abs(1/(x - 1)) - 1 > 0, x) == \
        ConditionSet(x, Eq((1 - Abs(x - 1))/Abs(x - 1) > 0, 0),
            S.Reals)
    assert solveset(abs(1/(x - 1)) - 1 > 0, x, domain=S.Reals
        ) == Union(Interval.open(0, 1), Interval.open(1, 2))
Exemple #8
0
def test_solve_abs():
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
        FiniteSet(1, 9)
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
        FiniteSet(-1, Rational(1, 3))

    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))

    # issue 9565. Note: solveset_real does not solve this as it is
    # solveset's job to handle Relationals
    assert solveset(Abs((x - 1)/(x - 5)) <= S(1)/3, domain=S.Reals
        ) == Interval(-1, 2)

    # issue #10069
    assert solveset_real(abs(1/(x - 1)) - 1 > 0, x) == \
        ConditionSet(x, Eq((1 - Abs(x - 1))/Abs(x - 1) > 0, 0),
            S.Reals)
    assert solveset(abs(1/(x - 1)) - 1 > 0, x, domain=S.Reals
        ) == Union(Interval.open(0, 1), Interval.open(1, 2))
def test_trig_inequalities():
    # all the inequalities are solved in a periodic interval.
    assert isolve(sin(x) < S.Half, x, relational=False) == \
        Union(Interval(0, pi/6, False, True), Interval.open(pi*Rational(5, 6), 2*pi))
    assert isolve(sin(x) > S.Half, x, relational=False) == \
        Interval(pi/6, pi*Rational(5, 6), True, True)
    assert isolve(cos(x) < S.Zero, x, relational=False) == \
        Interval(pi/2, pi*Rational(3, 2), True, True)
    assert isolve(cos(x) >= S.Zero, x, relational=False) == \
        Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi))

    assert isolve(tan(x) < S.One, x, relational=False) == \
        Union(Interval.Ropen(0, pi/4), Interval.open(pi/2, pi))

    assert isolve(sin(x) <= S.Zero, x, relational=False) == \
        Union(FiniteSet(S.Zero), Interval.Ropen(pi, 2*pi))

    assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals
    assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
    assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals
    assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet
Exemple #10
0
def test_issue_8715():
    eq = x + 1 / x > -2 + 1 / x
    assert solveset(eq, x, S.Reals) == \
        (Interval.open(-2, oo) - FiniteSet(0))
    assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
        Interval.open(exp(-2), oo) - FiniteSet(1)
Exemple #11
0
def test_issue_8715():
    eq = x + 1 / x > -2 + 1 / x
    assert solveset(eq, x, S.Reals) == (Interval.open(-2, oo) - FiniteSet(0))
    assert solveset(eq.subs(x, log(x)), x, S.Reals) == Interval.open(exp(-2), oo) - FiniteSet(1)
def test_find_real_domain():
    from sympy.abc import t as my_t
    from sympy import Union, Interval, oo, Intersection, Abs
    assert_equals(find_real_domain(1 / my_t, my_t),
                  Union(Interval.open(-oo, 0), Interval.open(0, oo)))
    assert_equals(find_real_domain(Abs(my_t), my_t), S.Reals)
Exemple #13
0
def test_Union_contains():
    assert zoo not in Union(
        Interval.open(-oo, 0), Interval.open(0, oo))
Exemple #14
0
def inequation_to_interval(inequation):
    """
    Devuelve un intervalo a partir de una inequación
    Parte del supuesto de que de un lado de la inecuación
    se encuentra "x", sin operaciones.
    """

    args = inequation.args

    less = [LessThan, StrictLessThan]
    greater = [GreaterThan, StrictGreaterThan]

    if inequation.__class__ in greater + less:  # [StrictGreaterThan, GreaterThan, StrictLessThan, LessThan]
        inequation = _adapt(inequation)

        args = inequation.args
        a = args[0]
        b = args[1]

        if inequation.__class__ in greater:
            if inequation.__class__ == StrictGreaterThan:
                # Ejemplo: x > b
                # Intervalo: (b, +oo)
                return Interval.open(b, oo)

            elif inequation.__class__ == GreaterThan:
                # Ejemplo: x >= b
                # Intervalo: [b, +oo)
                return Interval(b, oo)  # Cerrado por izquierda

        elif inequation.__class__ in less:
            if inequation.__class__ == StrictLessThan:
                # Ejemplo: x < b
                # Intervalo: (-oo, b)
                return Interval.open(-oo, b)

            elif inequation.__class__ == LessThan:
                # Ejemplo: x <= b
                # Intervalo: (-oo, b]
                return Interval(-oo, b)  # Cerrado por derecha

    elif inequation.__class__ == And:
        # El primer valor en args siempre es una inequación

        _args = []
        for arg in args:
            _args.append(_adapt(arg))

        args = _args

        d = {1: [], 2: []}

        for arg in args:
            # FIXME: Y si hay otro And o un Or ?
            if arg.__class__ in less:
                d[1].append(inequation_to_interval(arg))

            elif arg.__class__ in greater:
                d[2].append(inequation_to_interval(arg))

        if d[1]:
            __less = True
            _less = d[1][0]
            for _i in d[1][1:]:
                _less = Interval.union(_less, _i)

        else:
            __less = False
            _less = EmptySet()

        if d[2]:
            __greater = True
            _greater = d[2][0]
            for _i in d[2][1:]:
                _greater = Interval.union(_greater, _i)

        else:
            __greater = False
            _greater = EmptySet()

        if __greater and __less:
            return _less.intersect(_greater)

        elif __less and not __greater:
            return _less

        elif __greater and not __less:
            return _greater

    elif inequation.__class__ == Or:
        interval = inequation_to_interval(args[0])

        for arg in args[1:]:
            interval = Union(interval, inequation_to_interval(arg))

        return interval

    elif inequation.__class__ == BooleanTrue:
        # Por ejemplo: 4 > 2, todos los x pertenecientes
        # a los reales cumplen esta inecuación
        return REALS

    elif inequation.__class__ == BooleanFalse:
        # Por ejemplo: 2 > 4, ningún x perteneciente a los
        # reales cumple con esta inecuación
        return EmptySet()

    else:
        print inequation, inequation.__class__