def show_resolution(seed):
    rng = np.random.RandomState(seed)
    kwargs = dict(alphabet=LANGUAGE_MAP['english'].get_alphabet(),
                  is_bold=False,
                  is_slant=False,
                  inverse_color=False,
                  pixel_noise_scale=0)
    attr_list = [
        basic_attribute_sampler(resolution=(8, 8),
                                char='b',
                                font='arial',
                                scale=0.9,
                                rotation=0,
                                background=SolidColor((0, 0, 0)),
                                foreground=SolidColor((0.5, 0.5, 0)),
                                **kwargs),
        basic_attribute_sampler(resolution=(16, 16),
                                char='x',
                                font='time',
                                scale=0.7,
                                **kwargs),
        basic_attribute_sampler(resolution=(32, 32),
                                char='g',
                                font='flavors',
                                scale=0.6,
                                rotation=1,
                                **kwargs),
        basic_attribute_sampler(resolution=(64, 64),
                                scale=0.3,
                                n_symbols=5,
                                **kwargs),
        basic_attribute_sampler(resolution=(128, 128),
                                scale=0.1,
                                n_symbols=30,
                                **kwargs),
    ]

    def attr_sampler():
        for attr in attr_list:
            yield attr(seed=rand_seed(rng))

    x, y = pack_dataset_resample(dataset_generator(attr_sampler(), 1000))
    plot_dataset(x,
                 y,
                 h_axis='rotation',
                 v_axis=None,
                 n_col=5,
                 n_row=1,
                 hide_axis=True)

    ax = plt.gca()
    ax.set_xticks((np.arange(len(attr_list)) + 0.5) * x.shape[1])
    ax.set_xticklabels(['8 x 8', '16 x 16', '32 x 32', '64 x 64', '128 x 128'],
                       rotation=0)
    ax.get_xaxis().set_visible(True)
    plt.xlabel('')
def show_background(seed):
    rng = np.random.RandomState(seed)
    kwargs = dict(resolution=(128, 128),
                  alphabet=LANGUAGE_MAP['english'].get_alphabet(),
                  char='a',
                  inverse_color=False,
                  pixel_noise_scale=0)
    attr_list = [
        basic_attribute_sampler(background=SolidColor((0.2, 0.2, 0)),
                                foreground=SolidColor((0.8, 0, 0.8)),
                                **kwargs),
        basic_attribute_sampler(background=lambda _rng: Gradient(
            types=('radial', ), seed=rand_seed(_rng)),
                                foreground=lambda _rng: Gradient(
                                    types=('radial', ), seed=rand_seed(_rng)),
                                **kwargs),
        basic_attribute_sampler(
            background=lambda _rng: Camouflage(stroke_angle=np.pi / 4,
                                               seed=rand_seed(_rng)),
            foreground=lambda _rng: Camouflage(stroke_angle=np.pi * 3 / 4,
                                               seed=rand_seed(_rng)),
            **kwargs),
        basic_attribute_sampler(
            background=lambda _rng: ImagePattern(seed=rand_seed(_rng)),
            foreground=lambda _rng: ImagePattern(seed=rand_seed(_rng)),
            **kwargs),
        add_occlusion(basic_attribute_sampler(**kwargs),
                      n_occlusion=3,
                      scale=lambda _rng: 0.3 * np.exp(_rng.randn() * 0.1),
                      translation=lambda _rng: tuple(_rng.rand(2) * 2 - 1))
    ]

    def attr_sampler():
        for attr in attr_list:
            yield attr(seed=rand_seed(rng))

    x, _, y = pack_dataset(
        dataset_generator(attr_sampler(), 1000, flatten_mask_except_first))
    plot_dataset(x,
                 y,
                 h_axis='scale',
                 v_axis=None,
                 n_col=5,
                 n_row=1,
                 hide_axis=True)

    ax = plt.gca()
    ax.set_xticks((np.arange(5) + 0.5) * x.shape[1])
    ax.set_xticklabels(
        ['Solid', 'Gradient', 'Camouflage', 'Natural', 'Occlusions'],
        rotation=0)
    ax.get_xaxis().set_visible(True)
    plt.xlabel('')
def show_fonts(seed):
    rng = np.random.RandomState(seed)

    def attr_sampler():
        for char in 'abCD':
            for font in font_list:
                yield basic_attribute_sampler(
                    alphabet=LANGUAGE_MAP['english'],
                    char=char,
                    font=font,
                    is_bold=False,
                    is_slant=False,
                    resolution=(128, 128),
                    pixel_noise_scale=0)(seed=rand_seed(rng))

    x, _, y = pack_dataset(dataset_generator(attr_sampler(), 1000))
    plot_dataset(x, y, h_axis='font', v_axis='char', hide_axis=True)
def main():
    # XXX: Imports are here so that they are done
    # inside the docker image (synbols [...])
    from synbols.data_io import load_h5
    from synbols.utils import flatten_attr
    from synbols.visualization import plot_dataset

    args = parse_args()
    if args.data is None:
        raise Exception(" path to the data is not defined."
                        "Please use `--data` and indicate the path.")
    print("load dataset in h5 format ...")

    x, mask, attr_list, splits = load_h5(args.data)
    print("x.shape:", x.shape)

    attr_list = [flatten_attr(attr) for attr in attr_list]

    all_attr_keys = []
    for attr in attr_list[0].keys():
        all_attr_keys.append(attr)
    check = all(key in all_attr_keys for key in args.attr_keys)

    if not check:
        raise Exception("One or more of the provided attribute keys are" +
                        "not valid." +
                        f"The complete list of keys is {all_attr_keys}")

    split_masks = splits[args.split_name]
    print("making statistics for %s." % args.split_name)
    view_split(split_masks, attr_list, args.attr_keys, args.split_name)

    plot_dataset(x, attr_list, v_axis=None, h_axis="font")

    if args.save:
        plt.savefig(args.save)

    plt.show()
def show_languages(seed):
    language_list = [
        'korean', 'chinese', 'telugu', 'thai', 'gujarati', 'arabic', 'tamil',
        'russian'
    ]

    rng = np.random.RandomState(seed)

    def attr_sampler():
        for lang in language_list:
            alphabet = LANGUAGE_MAP[lang].get_alphabet()
            for i in range(4):
                yield basic_attribute_sampler(
                    alphabet=alphabet,
                    char=lambda rng: rng.choice(alphabet.symbols),
                    font=lambda rng: rng.choice(alphabet.fonts),
                    is_bold=False,
                    is_slant=False,
                    resolution=(128, 128),
                    pixel_noise_scale=0)(seed=rand_seed(rng))

    x, _, y = pack_dataset(dataset_generator(attr_sampler(), 1000))
    h_values, v_values = plot_dataset(x,
                                      y,
                                      h_axis='alphabet',
                                      v_axis=None,
                                      n_col=len(language_list),
                                      n_row=4,
                                      hide_axis=True)

    # map = {'chinese-simplified': 'chinese'}
    # h_values = [map.get(val, val) for val in h_values]

    ax = plt.gca()
    ax.set_xticks((np.arange(len(h_values)) + 0.5) * x.shape[1])
    ax.set_xticklabels(h_values, rotation=0)
    ax.get_xaxis().set_visible(True)
    plt.xlabel('')
def make_image(attr_sampler, file_name):
    x, _, y = pack_dataset(dataset_generator(attr_sampler, 1000))

    plot_dataset(x, y, h_axis='font', v_axis='char')

    plt.savefig(file_name)
Exemple #7
0
from synbols import generate
from synbols import drawing

from synbols.visualization import plot_dataset
import matplotlib.pyplot as plt

# bg = drawing.Camouflage(stroke_angle=1.)
# bg = drawing.NoPattern()
bg = drawing.MultiGradient(alpha=0.5,
                           n_gradients=2,
                           types=('linear', 'radial'))
# bg = drawing.Gradient(types=('linear',), random_color=drawing.color_sampler(brightness_range=(0.1, 0.9)))

# fg = drawing.Camouflage(stroke_angle=0.5)
# fg = drawing.SolidColor((1, 1, 1))
fg = drawing.Gradient(
    types=('radial', ),
    random_color=drawing.color_sampler(brightness_range=(0.1, 0.9)))

attr_sampler = generate.basic_attribute_sampler(resolution=(64, 64),
                                                foreground=fg,
                                                background=bg)
# attr_sampler = generate.add_occlusion(attr_sampler)
x, mask, y = pack_dataset(
    generate.dataset_generator(attr_sampler, 500, generate.flatten_mask))

plt.figure('dataset')
plot_dataset(x, y, h_axis='char', v_axis='font', n_row=10, n_col=20)

plt.savefig('view_generator.png')