Exemple #1
0
 def test_empty(self):
     dummy = SpikeData()
     assert len(dummy.cfg) == 0
     assert dummy.dimord is None
     for attr in [
             "channel", "data", "sampleinfo", "samplerate", "trialid",
             "trialinfo", "unit"
     ]:
         assert getattr(dummy, attr) is None
     with pytest.raises(SPYTypeError):
         SpikeData({})
Exemple #2
0
    def test_nparray(self):
        dummy = SpikeData(self.data)
        assert dummy.dimord == ["sample", "channel", "unit"]
        assert dummy.channel.size == self.num_chn
        # NOTE: SpikeData.sample is currently empty
        # assert dummy.sample.size == self.num_smp
        assert dummy.unit.size == self.num_unt
        assert (dummy.sampleinfo == [0, self.data[:, 0].max()]).min()
        assert dummy.trialinfo.shape == (1, 0)
        assert np.array_equal(dummy.data, self.data)

        # wrong shape for data-type
        with pytest.raises(SPYValueError):
            SpikeData(np.ones((3, )))
Exemple #3
0
    def test_trialretrieval(self):
        # test ``_get_trial`` with NumPy array: regular order
        dummy = SpikeData(self.data, trialdefinition=self.trl)
        smp = self.data[:, 0]
        for trlno, start in enumerate(range(0, self.ns, 5)):
            idx = np.intersect1d(
                np.where(smp >= start)[0],
                np.where(smp < start + 5)[0])
            trl_ref = self.data[idx, ...]
            assert np.array_equal(dummy._get_trial(trlno), trl_ref)

        # test ``_get_trial`` with NumPy array: swapped dimensions
        dummy = SpikeData(self.data2,
                          trialdefinition=self.trl,
                          dimord=["unit", "channel", "sample"])
        smp = self.data2[:, -1]
        for trlno, start in enumerate(range(0, self.ns, 5)):
            idx = np.intersect1d(
                np.where(smp >= start)[0],
                np.where(smp < start + 5)[0])
            trl_ref = self.data2[idx, ...]
            assert np.array_equal(dummy._get_trial(trlno), trl_ref)
Exemple #4
0
    def test_dataselection(self):
        dummy = SpikeData(data=self.data,
                          trialdefinition=self.trl,
                          samplerate=2.0)
        # selections are chosen so that result is not empty
        trialSelections = [
            "all",  # enforce below selections in all trials of `dummy`
            [3, 1]  # minimally unordered
        ]
        chanSelections = [
            ["channel03", "channel01", "channel01",
             "channel02"],  # string selection w/repetition + unordered
            [4, 2, 2, 5, 5],  # repetition + unorderd
            range(5, 8),  # narrow range
            slice(-5, None)  # negative-start slice
        ]
        toiSelections = [
            "all",  # non-type-conform string
            [-0.2, 0.6, 0.9, 1.1, 1.3, 1.6, 1.8, 2.2, 2.45,
             3.]  # unordered, inexact, repetions
        ]
        toilimSelections = [
            [0.5, 3.5],  # regular range
            [1.0, np.inf]  # unbounded from above
        ]
        unitSelections = [
            ["unit1", "unit1", "unit2", "unit3"],  # preserve repetition
            [0, 0, 2, 3],  # preserve repetition, don't convert to slice
            range(1, 4),  # narrow range
            slice(-2, None)  # negative-start slice
        ]
        timeSelections = list(zip(["toi"] * len(toiSelections), toiSelections)) \
            + list(zip(["toilim"] * len(toilimSelections), toilimSelections))

        chanIdx = dummy.dimord.index("channel")
        unitIdx = dummy.dimord.index("unit")
        chanArr = np.arange(dummy.channel.size)

        for trialSel in trialSelections:
            for chanSel in chanSelections:
                for unitSel in unitSelections:
                    for timeSel in timeSelections:
                        kwdict = {}
                        kwdict["trials"] = trialSel
                        kwdict["channels"] = chanSel
                        kwdict["units"] = unitSel
                        kwdict[timeSel[0]] = timeSel[1]
                        cfg = StructDict(kwdict)
                        # data selection via class-method + `Selector` instance for indexing
                        selected = dummy.selectdata(**kwdict)
                        selector = Selector(dummy, kwdict)
                        tk = 0
                        for trialno in selector.trials:
                            if selector.time[tk]:
                                assert np.array_equal(
                                    dummy.trials[trialno][
                                        selector.time[tk], :],
                                    selected.trials[tk])
                                tk += 1
                        assert set(selected.data[:, chanIdx]).issubset(
                            chanArr[selector.channel])
                        assert set(selected.channel) == set(
                            dummy.channel[selector.channel])
                        assert np.array_equal(
                            selected.unit,
                            dummy.unit[np.unique(selected.data[:, unitIdx])])
                        cfg.data = dummy
                        cfg.out = SpikeData(dimord=SpikeData._defaultDimord)
                        # data selection via package function and `cfg`: ensure equality
                        selectdata(cfg)
                        assert np.array_equal(cfg.out.channel,
                                              selected.channel)
                        assert np.array_equal(cfg.out.unit, selected.unit)
                        assert np.array_equal(cfg.out.data, selected.data)
Exemple #5
0
    def test_saveload(self):
        with tempfile.TemporaryDirectory() as tdir:
            fname = os.path.join(tdir, "dummy")

            # basic but most important: ensure object integrity is preserved
            checkAttr = [
                "channel", "data", "dimord", "sampleinfo", "samplerate",
                "trialinfo", "unit"
            ]
            dummy = SpikeData(self.data, samplerate=10)
            dummy.save(fname)
            filename = construct_spy_filename(fname, dummy)
            # dummy2 = SpikeData(filename)
            # for attr in checkAttr:
            #     assert np.array_equal(getattr(dummy, attr), getattr(dummy2, attr))
            dummy3 = load(fname)
            for attr in checkAttr:
                assert np.array_equal(getattr(dummy3, attr),
                                      getattr(dummy, attr))
            save(dummy3, container=os.path.join(tdir, "ymmud"))
            dummy4 = load(os.path.join(tdir, "ymmud"))
            for attr in checkAttr:
                assert np.array_equal(getattr(dummy4, attr),
                                      getattr(dummy, attr))
            del dummy3, dummy4  # avoid PermissionError in Windows
            time.sleep(0.1)  # wait to kick-off garbage collection

            # overwrite existing container w/new data
            dummy.samplerate = 20
            dummy.save()
            dummy2 = load(filename=filename)
            assert dummy2.samplerate == 20
            del dummy, dummy2
            time.sleep(0.1)  # wait to kick-off garbage collection

            # ensure trialdefinition is saved and loaded correctly
            dummy = SpikeData(self.data,
                              trialdefinition=self.trl,
                              samplerate=10)
            dummy.save(fname, overwrite=True)
            dummy2 = load(filename)
            assert np.array_equal(dummy.sampleinfo, dummy2.sampleinfo)
            assert np.array_equal(dummy._t0, dummy2._t0)
            assert np.array_equal(dummy.trialinfo, dummy2.trialinfo)
            del dummy, dummy2
            time.sleep(0.1)  # wait to kick-off garbage collection

            # swap dimensions and ensure `dimord` is preserved
            dummy = SpikeData(self.data,
                              dimord=["unit", "channel", "sample"],
                              samplerate=10)
            dummy.save(fname + "_dimswap")
            filename = construct_spy_filename(fname + "_dimswap", dummy)
            dummy2 = load(filename)
            assert dummy2.dimord == dummy.dimord
            assert dummy2.unit.size == self.num_smp  # swapped
            assert dummy2.data.shape == dummy.data.shape

            # Delete all open references to file objects b4 closing tmp dir
            del dummy, dummy2
            time.sleep(0.1)