def test_CI_sham(): import numpy as np from synergy.combination import CombinationIndex from synergy.datasets import sham d1, d2, E = sham() model = CombinationIndex() synergy = model.fit(d1, d2, E) assert np.abs(np.nanmean(np.log(synergy))) < 0.1
def test_HSA_sham(): import numpy as np from synergy.combination import HSA from synergy.datasets import sham d1, d2, E = sham() model = HSA() synergy = model.fit(d1, d2, E) assert np.nanmean(synergy)>0.08
def test_bliss_sham(): import numpy as np from synergy.combination import Bliss from synergy.datasets import sham d1, d2, E = sham() model = Bliss() synergy = model.fit(d1, d2, E) assert np.nanmean(synergy) < 0.1
def test_loewe_delta_variant(): import numpy as np from synergy.combination import Loewe from synergy.datasets import sham d1, d2, E = sham() model = Loewe(variant="delta") synergy = model.fit(d1, d2, E) assert np.nanmax(np.abs(synergy)) < 0.1
def test_loewe_sham(): import numpy as np from synergy.combination import Loewe from synergy.datasets import sham d1, d2, E = sham() model = Loewe() synergy = model.fit(d1, d2, E) assert np.abs(np.nanmean(np.log(synergy))) < 0.1
def test_plotly_linearscale(): import numpy as np from synergy.datasets import sham from synergy.utils.plots import plot_surface_plotly d1, d2, E = sham() d1 = np.hstack([d1, d1]) d2 = np.hstack([d2, d2]) E = np.hstack([E, E * 2]) plot_surface_plotly(d1, d2, E, fname="x.html", logscale=False) assert 1 == 1
def test_plotly_replicates(): import numpy as np from synergy.datasets import sham from synergy.utils.plots import plot_surface_plotly d1, d2, E = sham() d1 = np.hstack([d1, d1]) d2 = np.hstack([d2, d2]) E = np.hstack([E, E * 2]) plot_surface_plotly(d1, d2, E, fname="x.html") assert 1 == 1
def test_heatmap_linearscale(): import numpy as np from synergy.datasets import sham from synergy.utils.plots import plot_heatmap d1, d2, E = sham() d1 = np.hstack([d1, d1]) d2 = np.hstack([d2, d2]) E = np.hstack([E, E * 2]) plot_heatmap(d1, d2, E, fname="x.pdf", logscale=False) assert 1 == 1
def test_heatmap_replicates(): import numpy as np from synergy.datasets import sham from synergy.utils.plots import plot_heatmap d1, d2, E = sham() d1 = np.hstack([d1, d1]) d2 = np.hstack([d2, d2]) E = np.hstack([E, E * 2]) plot_heatmap(d1, d2, E, fname="x.pdf") assert 1 == 1