Exemple #1
0
def check_unreal(
    ltl_text,
    part_text,
    is_moore,
    ltl3ba: LTL3BA,
    solver_factory: Z3SolverFactory,
    min_size,
    max_size,
    ltl3ba_timeout_sec=None,
    opt_level=0,
) -> LTS:
    """
    :raise: subprocess.TimeoutException
    :arg opt_level: Note that opt_level > 0 may introduce unsoundness (returns unrealizable while it is)
    """
    timer = Timer()
    outputs, inputs, expr = parse_acacia_and_build_expr(ltl_text, part_text, ltl3ba, opt_level)

    timer.sec_restart()
    automaton = ltl3ba.convert(expr, timeout=ltl3ba_timeout_sec)  # note no negation
    logging.info("(unreal) automaton size is: %i" % len(automaton.nodes))
    logging.debug("(unreal) automaton (dot) is:\n" + automaton2dot.to_dot(automaton))
    logging.debug("(unreal) automaton translation took (sec): %i" % timer.sec_restart())

    encoder = create_encoder(inputs, outputs, not is_moore, automaton, solver_factory.create())

    model = model_searcher.search(min_size, max_size, encoder)
    logging.debug("(unreal) model_searcher.search took (sec): %i" % timer.sec_restart())

    return model
Exemple #2
0
def check_real(ltl_text,
               part_text,
               is_moore,
               ltl_to_atm: LTLToAutomaton,
               solver: SolverInterface,
               max_k: int,
               min_size,
               max_size,
               opt_level=0) -> LTS:
    """
    When opt_level>0, introduce incompleteness (but it is sound: if returns REAL, then REAL)
    When max_k>0, reduce UCW to k-UCW.
    """
    timer = Timer()
    spec = parse_acacia_and_build_expr(ltl_text, part_text, ltl_to_atm,
                                       opt_level)

    logging.info("LTL formula size: %i", expr_size(spec.formula))

    timer.sec_restart()
    automaton = ltl_to_atm.convert(~spec.formula)
    logging.info('automaton size is: %i' % len(automaton.nodes))
    logging.debug('automaton (dot) is:\n' + automaton_to_dot.to_dot(automaton))
    logging.debug('automaton translation took (sec): %i' % timer.sec_restart())

    tau_desc = build_tau_desc(spec.inputs)
    desc_by_output = dict(
        (o, build_output_desc(o, is_moore, spec.inputs)) for o in spec.outputs)
    if max_k == 0:
        logging.info("using CoBuchiEncoder")
        encoder = CoBuchiEncoder(automaton, tau_desc, spec.inputs,
                                 desc_by_output, range(max_size))
        model = model_searcher.search(min_size, max_size, encoder, solver)
    else:
        coreach_automaton = k_reduce(automaton, max_k)
        # with open('/tmp/orig.dot', 'w') as f:
        #     f.write(automaton_to_dot.to_dot(automaton))
        # with open('/tmp/red.dot', 'w') as f:
        #     f.write(automaton_to_dot.to_dot(coreach_automaton))
        # exit()
        logging.info("using CoReachEncoder")
        logging.info('co-reachability automaton size is: %i' %
                     len(coreach_automaton.nodes))
        logging.debug('co-reachability automaton (dot) is:\n' +
                      automaton_to_dot.to_dot(coreach_automaton))
        encoder = CoreachEncoder(coreach_automaton, tau_desc, spec.inputs,
                                 desc_by_output, range(max_size), max_k)
        model = model_k_searcher.search(min_size, max_size, max_k, encoder,
                                        solver)

    logging.info('searching a model took (sec): %i' % timer.sec_restart())

    return model
Exemple #3
0
def check_unreal(ltl_text,
                 part_text,
                 is_moore,
                 ltl_to_atm: LTLToAutomaton,
                 solver: SolverInterface,
                 max_k: int,
                 min_size,
                 max_size,
                 opt_level=0) -> LTS:
    """
    Note that opt_level > 0 may introduce unsoundness (returns unrealizable while it is).
    """
    timer = Timer()
    spec = parse_acacia_and_build_expr(ltl_text, part_text, ltl_to_atm,
                                       opt_level)

    logging.info("LTL formula size: %i", expr_size(spec.formula))

    timer.sec_restart()
    automaton = ltl_to_atm.convert(spec.formula)
    logging.info('(unreal) automaton size is: %i' % len(automaton.nodes))
    logging.debug('(unreal) automaton (dot) is:\n' +
                  automaton_to_dot.to_dot(automaton))
    logging.debug('(unreal) automaton translation took (sec): %i' %
                  timer.sec_restart())

    # note: inputs/outputs and machine type are reversed
    tau_desc = build_tau_desc(spec.outputs)
    desc_by_output = dict((i, build_output_desc(i, not is_moore, spec.outputs))
                          for i in spec.inputs)
    if max_k == 0:
        encoder = CoBuchiEncoder(automaton, tau_desc, spec.outputs,
                                 desc_by_output, range(max_size))

        model = model_searcher.search(min_size, max_size, encoder, solver)
    else:
        coreach_automaton = k_reduce(automaton, max_k)
        logging.info("(unreal) using CoReachEncoder")
        logging.info('(unreal) co-reachability automaton size is: %i' %
                     len(coreach_automaton.nodes))
        logging.debug('(unreal) co-reachability automaton (dot) is:\n' +
                      automaton_to_dot.to_dot(coreach_automaton))
        encoder = CoreachEncoder(coreach_automaton, tau_desc, spec.outputs,
                                 desc_by_output, range(max_size), max_k)
        model = model_k_searcher.search(min_size, max_size, max_k, encoder,
                                        solver)
    logging.debug('(unreal) model_searcher.search took (sec): %i' %
                  timer.sec_restart())
    return model
Exemple #4
0
def check_real(spec: Spec, min_size, max_size, ltl_to_atm: LTLToAutomaton,
               solver_factory: Z3SolverFactory,
               use_direct_encoding: bool) -> LTS or None:
    shared_aht, dstFormPropMgr = SharedAHT(), DstFormulaPropMgr()

    # normalize formula (negations appear only in front of basic propositions)
    spec.formula = NNFNormalizer().dispatch(spec.formula)
    logging.info("CTL* formula size: %i", expr_size(spec.formula))

    if use_direct_encoding:
        top_formula, atm_by_p, UCWs = automize_ctl(spec.formula, ltl_to_atm)
        logging.info("Total number of states in sub-automata: %i",
                     sum([len(a.nodes) for a in atm_by_p.values()]))
        for p, atm in atm_by_p.items():
            logging.debug(str(p) + ', atm: \n' + automaton_to_dot.to_dot(atm))
        encoder = CTLEncoderDirect(
            top_formula, atm_by_p, UCWs, build_tau_desc(spec.inputs),
            spec.inputs,
            dict((o, build_output_desc(o, True, spec.inputs))
                 for o in spec.outputs), range(max_size))
    else:
        aht_automaton = ctl2aht.ctl2aht(spec, ltl_to_atm, shared_aht,
                                        dstFormPropMgr)

        aht_nodes, aht_transitions = get_reachable_from(
            aht_automaton.init_node, shared_aht.transitions, dstFormPropMgr)
        logging.info('The AHT automaton size (nodes/transitions) is: %i/%i' %
                     (len(aht_nodes), len(aht_transitions)))
        if not aht_transitions:
            logging.info('AHT is empty => the spec is unrealizable!')
            return None

        if logging.getLogger().isEnabledFor(
                logging.DEBUG):  # aht2dot takes long time
            logging.debug('AHT automaton (dot) is...\n')
            logging.debug(
                aht2dot.convert(aht_automaton, shared_aht, dstFormPropMgr))

        encoder = CTLEncoderViaAHT(
            aht_automaton, aht_transitions, dstFormPropMgr,
            build_tau_desc(spec.inputs), spec.inputs,
            dict((o, build_output_desc(o, True, spec.inputs))
                 for o in spec.outputs), range(max_size))

    model = model_searcher.search(min_size, max_size, encoder,
                                  solver_factory.create())
    return model
Exemple #5
0
def check_real(
    ltl_text, part_text, is_moore, ltl3ba, solver_factory: Z3SolverFactory, min_size, max_size, opt_level=2
) -> LTS:
    """
    :param opt_level: values > 0 introduce incompleteness (but it is sound: if returns REAL, then REAL)
    """
    timer = Timer()
    inputs, outputs, expr = parse_acacia_and_build_expr(ltl_text, part_text, ltl3ba, opt_level)

    timer.sec_restart()
    automaton = ltl3ba.convert(~expr)
    logging.info("(real) automaton size is: %i" % len(automaton.nodes))
    logging.debug("(real) automaton (dot) is:\n" + automaton2dot.to_dot(automaton))
    logging.debug("(real) automaton translation took (sec): %i" % timer.sec_restart())

    encoder = create_encoder(inputs, outputs, is_moore, automaton, solver_factory.create())

    model = model_searcher.search(min_size, max_size, encoder)
    logging.debug("(real) model_searcher.search took (sec): %i" % timer.sec_restart())

    return model