Exemple #1
0
def main():
  parser = argparse.ArgumentParser(description='Execute different functions of our system')
  parser.add_argument('mode',
    choices=[
      'window_stats', 'evaluate_metaparams', 'evaluate_jw',
      'evaluate_get_pos_windows', 'train_svm',
      'extract_sift','extract_assignments','extract_codebook',
      'evaluate_jw_grid', 'final_metaparams',
      'assemble_dpm_dets','ctfdet','assemble_ctf_dets'
      ])
  parser.add_argument('--test_dataset', choices=['val','test','train'],
      default='test', help='dataset to use for testing. the training dataset \
      is automatically inferred (val->train and test->trainval).')
  parser.add_argument('--first_n', type=int,
      help='only take the first N images in the datasets')
  parser.add_argument('--bounds', type=str,
      help='the start_time and deadline_time for the ImagePolicy and corresponding evaluation. ex: (1,5)')
  parser.add_argument('--name', help='name for this run')
  parser.add_argument('--priors', default='random', help= \
      "list of choice for the policy for selecting the next action. choose from random, oracle,fixed_order, no_smooth, backoff. ex: --priors=random,oracle,no_smooth")
  parser.add_argument('--compare_evals', action='store_true', 
      default=False, help='plot all the priors modes given on same plot'),
  parser.add_argument('--detector', choices=['perfect','perfect_with_noise', 'dpm','ctf'],
      default='perfect', help='detector type')
  parser.add_argument('--force', action='store_true', 
      default=False, help='force overwrite')
  parser.add_argument('--gist', action='store_true', 
      default=False, help='use GIST as one of the actions')
  parser.add_argument('--clear_tmp', action='store_true', 
      default=False, help='clear the cached windows folder before running'),
  parser.add_argument('--feature_type', choices=['sift','dsift'], 
      default='dsift', help='use this feature type'),
  parser.add_argument('--kernel', choices=['chi2','rbf'], 
      default='chi2', help='kernel to train svm on'),
      
  args = parser.parse_args()
  if args.priors:
    args.priors = args.priors.split(',')
  if args.bounds:
    args.bounds = [float(x) for x in re.findall(r'\d+', args.bounds)]
    assert(len(args.bounds)==2)
  print(args)

  # Load the dataset
  dataset = Dataset('full_pascal_'+args.test_dataset)
  if args.first_n:
    dataset.images = dataset.images[:args.first_n]

  # Infer train_dataset
  if args.test_dataset=='test':
    train_dataset = Dataset('full_pascal_trainval')
  elif args.test_dataset=='val':
    train_dataset = Dataset('full_pascal_train')
  else:
    print("Impossible, setting train_dataset to dataset")
    train_dataset = dataset
  
  # Create window generator
  sw = SlidingWindows(dataset,train_dataset)

  if args.clear_tmp:
    dirname = config.get_sliding_windows_cached_dir(train_dataset.get_name())
    shutil.rmtree(dirname)
    dirname = config.get_sliding_windows_cached_dir(dataset.get_name())
    shutil.rmtree(dirname)

  if args.mode=='assemble_dpm_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,suffix='dpm_may25')

  if args.mode=='assemble_ctf_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,'ctf','ctf_default')
    dets = policy.load_ext_detections(dataset,'ctf','ctf_nohal')
    dets = policy.load_ext_detections(dataset,'ctf', 'ctf_halfsize')

  if args.mode=='evaluate_get_pos_windows':
    evaluate_get_pos_windows(train_dataset)
    return

  if args.mode=='window_stats':
    "Compute and plot the statistics of ground truth window parameters."
    results = SlidingWindows.get_dataset_window_stats(train_dataset,plot=True)

  if args.mode=='ctfdet':
    """Run Pedersoli's detector on the dataset and assemble into one Table."""
    run_pedersoli(dataset)

  if args.mode=='evaluate_jw':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    # TODO hack: both sw and jw should subclass something like WindowGenerator
    jw = JumpingWindowsDetector(use_scale=True)
    sw.jw = jw
    #classes = dataset.classes
    classes = ['car']
#    classes = ['bicycle' ,'car','horse', 'sofa',\
#               'bird',  'chair',     'motorbike', 'train',\
#               'boat',  'cow',       'person',    'tvmonitor',\
#               'bottle','diningtable',  'pottedplant',\
#               'bus','dog'     ,'sheep']
    for cls_idx in range(comm_rank, len(classes), comm_size):
    #for cls in dataset.classes:
      cls = classes[cls_idx]
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)
  
  if args.mode=='evaluate_jw_grid':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    sw = SlidingWindows(dataset,train_dataset)
    jw = JumpingWindowsDetectorGrid()
    sw.jw = jw
    for cls in dataset.classes:
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      if os.path.isfile(config.data_dir + 'JumpingWindows/'+cls):
        sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)

  if args.mode=='train_svm':
    randomize = not os.path.exists('/home/tobibaum')
    
    d = Dataset('full_pascal_train')
    dtest = Dataset('full_pascal_val')  
    e = Extractor()  
    classes = config.pascal_classes  
    num_words = 3000
    iters = 5
    feature_type = 'dsift'
    codebook_samples = 15
    num_pos = 'max'
    testsize = 'max'
    if args.first_n:
      num_pos = args.first_n
      testsize = 1.5*num_pos
     
    kernel = args.kernel
    
    if comm_rank == 0:
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/codebooks/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/svms/train_times/')
      
    for cls_idx in range(comm_rank, len(classes), comm_size): 
    #for cls in classes:
      cls = classes[cls_idx]
      codebook = e.get_codebook(d, feature_type)
      pos_arr = d.get_pos_windows(cls)
      
      neg_arr = d.get_neg_windows(pos_arr.shape[0], cls, max_overlap=0)
      
      if not num_pos == 'max':    
        if not randomize:
          pos_arr = pos_arr[:num_pos]
          neg_arr = pos_arr[:num_pos]
        else:
          rand = np.random.random_integers(0, pos_arr.shape[0] - 1, size=num_pos)
          pos_arr = pos_arr[rand]
          rand = np.random.random_integers(0, neg_arr.shape[0] - 1, size=num_pos)
          neg_arr = neg_arr[rand]     
      pos_table = Table(pos_arr, ['x','y','w','h','img_ind'])
      neg_table = Table(neg_arr, pos_table.cols)      
      train_with_hard_negatives(d, dtest,  num_words,codebook_samples,codebook,\
                                cls, pos_table, neg_table,feature_type, \
                                iterations=iters, kernel=kernel, L=2, \
                                testsize=testsize,randomize=randomize)

  if args.mode=='evaluate_metaparams':
    """
    Grid search over metaparams values for get_windows_new, with the AUC of
    recall vs. # windows evaluation.
    """
    sw.grid_search_over_metaparams()
    return

  if args.mode=='final_metaparams':
    dirname = config.get_sliding_windows_metaparams_dir(train_dataset.get_name())
    # currently these are the best auc/complexity params
    best_params_for_classes = [
        (62,15,12,'importance',0), #aeroplane
        (83,15,12,'importance',0), #bicycle
        (62,15,12,'importance',0), #bird
        (62,15,12,'importance',0), #boat
        (125,12,12,'importance',0), #bottle
        (83,12,9,'importance',0), #bus
        (125,15,9,'importance',0), #car
        (125,12,12,'linear',0), #cat
        (125,15,9,'importance',0), #chair
        (125,9,6,'importance',0), #cow
        (125,15,6,'linear',0), #diningtable
        (62,15,12,'importance',0), #dog
        (83,15,6,'importance',0), #horse
        (83,12,6,'importance',0), #motorbike
        (83,15,12,'importance',0), #person
        (83,15,6,'importance',0), #pottedplant
        (83,15,12,'importance',0), #sheep
        (83,9,6,'importance',0), #sofa
        (62,12,6,'importance',0), #train
        (62,12,12,'importance',0), #tvmonitor
        (125,9,12,'importance',0) #all
        ]
    # ACTUALLY THEY ARE ALL THE SAME!
    cheap_params = (62, 9, 6, 'importance', 0)
    for i in range(comm_rank,dataset.num_classes(),comm_size):
      cls = dataset.classes[i]
      best_params = best_params_for_classes[i]
      #samples,num_scales,num_ratios,mode,priority,cls = cheap_params

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 0 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 1 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)
    return

  if args.mode=='extract_sift':
    e=Extractor()
    e.extract_all(['sift'], ['full_pascal_trainval','full_pascal_test'], 0, 0) 
    
  if args.mode=='extract_assignments':
    e=Extractor()
    feature_type = 'sift'
    for image_set in ['full_pascal_trainval','full_pascal_test']:
      d = Dataset(image_set)
      codebook = e.get_codebook(d, feature_type)  
      print 'codebook loaded'
      
      for img_ind in range(comm_rank,len(d.images),comm_size):
        img = d.images[img_ind]
      #for img in d.images:
        e.get_assignments(np.array([0,0,img.size[0],img.size[1]]), feature_type, \
                          codebook, img)

  if args.mode=='extract_codebook':
    d = Dataset('full_pascal_trainval')
    e = Extractor()
    codebook = e.get_codebook(d, args.feature_type)
Exemple #2
0
    def grid_search_over_metaparams(self):
        """
    Evaluates different metaparams for the get_windows_new method with the
    metric of AUC under the recall vs. # windows curve.
    """
        # approximately strides of 4, 6, and 8 px
        samples_per_500px_vals = [62, 83, 125]
        num_scales_vals = [9, 12, 15]
        num_ratios_vals = [6, 9, 12]
        mode_vals = ['linear', 'importance']
        priority_vals = [0]
        classes = self.dataset.classes + ['all']

        dirname = config.get_sliding_windows_metaparams_dir(self.train_name)
        table_filename = os.path.join(dirname, 'table.csv')
        if os.path.exists(table_filename):
            table = Table.load_from_csv(table_filename)
        else:
            grid_vals = [
                x for x in itertools.product(samples_per_500px_vals,
                                             num_scales_vals, num_ratios_vals,
                                             mode_vals, priority_vals, classes)
            ]
            num_combinations = len(grid_vals)
            print("Running over %d combinations of class and parameters." %
                  num_combinations)

            cols = [
                'cls_ind', 'samples_per_500px', 'num_scales', 'num_ratios',
                'mode_ind', 'priority', 'complexity', 'auc', 'max_recall'
            ]
            grid = np.zeros((num_combinations, len(cols)))
            for i in range(comm_rank, num_combinations, comm_size):
                grid_val = grid_vals[i]
                print(grid_val)
                samples, num_scales, num_ratios, mode, priority, cls = grid_val
                cls_ind = self.dataset.get_ind(cls)

                metaparams = {
                    'samples_per_500px': samples,
                    'num_scales': num_scales,
                    'num_ratios': num_ratios,
                    'mode': mode,
                    'priority': priority
                }
                mode_ind = mode_vals.index(metaparams['mode'])

                filename = '%s_%d_%d_%d_%s_%d' % (
                    cls, metaparams['samples_per_500px'],
                    metaparams['num_scales'], metaparams['num_ratios'],
                    metaparams['mode'], metaparams['priority'])
                cls_dirname = os.path.join(dirname, cls)
                ut.makedirs(cls_dirname)
                filename = os.path.join(cls_dirname, filename)

                tables = self.evaluate_recall(cls,
                                              filename,
                                              metaparams,
                                              'sw',
                                              plot=False,
                                              force=False)

                # compute the final metrics
                auc, max_rec = SlidingWindows.get_recall_vs_num_auc(
                    tables[1])  # the ov=0.5 table
                complexity = samples * num_scales * num_ratios
                grid[i, :] = np.array([
                    cls_ind, samples, num_scales, num_ratios, mode_ind,
                    priority, complexity, auc, max_rec
                ])
            # Reduce the MPI jobs
            if comm_rank == 0:
                grid_all = np.zeros((num_combinations, len(cols)))
            else:
                grid_all = None
            safebarrier(comm)
            comm.Reduce(grid, grid_all)
            table = Table(grid_all, cols)
            table.save_csv(table_filename)

        # print the winning parameters in the table
        for cls in self.dataset.classes + ['all']:
            st = table.filter_on_column('cls_ind', self.dataset.get_ind(cls))
            aucs = st.subset_arr('auc')
            max_recalls = st.subset_arr('max_recall')
            best_auc_ind = aucs.argmax()
            best_max_recall_ind = max_recalls.argmax()
            print("%s: best AUC is %.3f with metaparams (%d, %d, %d, %s, %d)" %
                  (cls, aucs[best_auc_ind], st.arr[best_auc_ind,
                                                   1], st.arr[best_auc_ind, 2],
                   st.arr[best_auc_ind, 3], mode_vals[int(
                       st.arr[best_auc_ind, 4])], st.arr[best_auc_ind, 5]))
            print(
                "%s: best max recall is %.3f with metaparams (%d, %d, %d, %s, %d)"
                % (cls, max_recalls[best_max_recall_ind],
                   st.arr[best_max_recall_ind, 1], st.arr[best_max_recall_ind,
                                                          2],
                   st.arr[best_max_recall_ind, 3], mode_vals[int(
                       st.arr[best_max_recall_ind,
                              4])], st.arr[best_max_recall_ind, 5]))

            complexities = st.subset_arr('complexity')
            complexities /= complexities.max()
            d_max_recalls = max_recalls / complexities
            d_aucs = aucs / complexities
            best_auc_ind = d_aucs.argmax()
            best_max_recall_ind = d_max_recalls.argmax()
            print(
                "%s: best AUC/complexity is %.3f with metaparams (%d, %d, %d, %s, %d)"
                % (cls, aucs[best_auc_ind], st.arr[best_auc_ind,
                                                   1], st.arr[best_auc_ind, 2],
                   st.arr[best_auc_ind, 3], mode_vals[int(
                       st.arr[best_auc_ind, 4])], st.arr[best_auc_ind, 5]))
            print(
                "%s: best max recall/complexity is %.3f with metaparams (%d, %d, %d, %s, %d)"
                % (cls, max_recalls[best_max_recall_ind],
                   st.arr[best_max_recall_ind, 1], st.arr[best_max_recall_ind,
                                                          2],
                   st.arr[best_max_recall_ind, 3], mode_vals[int(
                       st.arr[best_max_recall_ind,
                              4])], st.arr[best_max_recall_ind, 5]))
        return table
Exemple #3
0
  def grid_search_over_metaparams(self):
    """
    Evaluates different metaparams for the get_windows_new method with the
    metric of AUC under the recall vs. # windows curve.
    """
    # approximately strides of 4, 6, and 8 px
    samples_per_500px_vals = [62, 83, 125]
    num_scales_vals = [9,12,15]
    num_ratios_vals = [6,9,12]
    mode_vals = ['linear','importance']
    priority_vals = [0]
    classes = self.dataset.classes+['all']

    dirname = config.get_sliding_windows_metaparams_dir(self.train_name)
    table_filename = os.path.join(dirname,'table.csv')
    if os.path.exists(table_filename):
      table = Table.load_from_csv(table_filename)
    else:
      grid_vals = [x for x in itertools.product(
        samples_per_500px_vals,num_scales_vals,num_ratios_vals,mode_vals,priority_vals,classes)]
      num_combinations = len(grid_vals)
      print("Running over %d combinations of class and parameters."%num_combinations)

      cols = ['cls_ind','samples_per_500px','num_scales','num_ratios','mode_ind','priority','complexity','auc','max_recall']
      grid = np.zeros((num_combinations,len(cols)))
      for i in range(comm_rank, num_combinations, comm_size):
        grid_val = grid_vals[i]
        print(grid_val)
        samples,num_scales,num_ratios,mode,priority,cls = grid_val
        cls_ind = self.dataset.get_ind(cls)

        metaparams = {
          'samples_per_500px': samples,
          'num_scales': num_scales,
          'num_ratios': num_ratios,
          'mode': mode,
          'priority': priority}
        mode_ind = mode_vals.index(metaparams['mode'])

        filename = '%s_%d_%d_%d_%s_%d'%(
            cls,
            metaparams['samples_per_500px'],
            metaparams['num_scales'],
            metaparams['num_ratios'],
            metaparams['mode'],
            metaparams['priority'])
        cls_dirname = os.path.join(dirname,cls)
        ut.makedirs(cls_dirname)
        filename = os.path.join(cls_dirname,filename)

        tables = self.evaluate_recall(cls,filename,metaparams,'sw',plot=False,force=False)

        # compute the final metrics 
        auc,max_rec = SlidingWindows.get_recall_vs_num_auc(tables[1]) # the ov=0.5 table
        complexity = samples*num_scales*num_ratios
        grid[i,:] = np.array([cls_ind, samples, num_scales, num_ratios, mode_ind, priority, complexity, auc, max_rec])
      # Reduce the MPI jobs
      if comm_rank == 0:
        grid_all = np.zeros((num_combinations,len(cols)))
      else:
        grid_all = None
      safebarrier(comm)
      comm.Reduce(grid,grid_all)
      table = Table(grid_all,cols)
      table.save_csv(table_filename)

    # print the winning parameters in the table
    for cls in self.dataset.classes+['all']:
      st = table.filter_on_column('cls_ind',self.dataset.get_ind(cls))
      aucs = st.subset_arr('auc')
      max_recalls = st.subset_arr('max_recall')
      best_auc_ind = aucs.argmax()
      best_max_recall_ind = max_recalls.argmax()
      print("%s: best AUC is %.3f with metaparams (%d, %d, %d, %s, %d)"%(
        cls, aucs[best_auc_ind],
        st.arr[best_auc_ind,1], st.arr[best_auc_ind,2], st.arr[best_auc_ind,3],
        mode_vals[int(st.arr[best_auc_ind,4])], st.arr[best_auc_ind,5]))
      print("%s: best max recall is %.3f with metaparams (%d, %d, %d, %s, %d)"%(
        cls, max_recalls[best_max_recall_ind],
        st.arr[best_max_recall_ind,1], st.arr[best_max_recall_ind,2],
        st.arr[best_max_recall_ind,3],
        mode_vals[int(st.arr[best_max_recall_ind,4])], st.arr[best_max_recall_ind,5]))

      complexities = st.subset_arr('complexity')
      complexities /= complexities.max()
      d_max_recalls = max_recalls/complexities
      d_aucs = aucs/complexities
      best_auc_ind = d_aucs.argmax()
      best_max_recall_ind = d_max_recalls.argmax()
      print("%s: best AUC/complexity is %.3f with metaparams (%d, %d, %d, %s, %d)"%(
        cls, aucs[best_auc_ind],
        st.arr[best_auc_ind,1], st.arr[best_auc_ind,2], st.arr[best_auc_ind,3],
        mode_vals[int(st.arr[best_auc_ind,4])], st.arr[best_auc_ind,5]))
      print("%s: best max recall/complexity is %.3f with metaparams (%d, %d, %d, %s, %d)"%(
        cls, max_recalls[best_max_recall_ind],
        st.arr[best_max_recall_ind,1], st.arr[best_max_recall_ind,2],
        st.arr[best_max_recall_ind,3],
        mode_vals[int(st.arr[best_max_recall_ind,4])], st.arr[best_max_recall_ind,5]))
    return table