argv = sys.argv[1:] obj_func_name = str(argv[0]) method = str(argv[1]) num_to_sample = int(argv[2]) job_id = int(argv[3]) # constants num_func_eval = 100 num_iteration = int(num_func_eval / num_to_sample) + 1 obj_func_dict = { 'Branin': synthetic_functions.Branin(), 'Rosenbrock': synthetic_functions.Rosenbrock(), 'Hartmann3': synthetic_functions.Hartmann3(), 'Levy4': synthetic_functions.Levy4(), 'Hartmann6': synthetic_functions.Hartmann6() } #'CIFAR10': real_functions.CIFAR10(), #'KISSGP': real_functions.KISSGP()} objective_func = obj_func_dict[obj_func_name] dim = int(objective_func._dim) num_initial_points = int(objective_func._num_init_pts) num_fidelity = objective_func._num_fidelity inner_search_domain = pythonTensorProductDomain([ ClosedInterval(objective_func._search_domain[i, 0], objective_func._search_domain[i, 1]) for i in xrange(objective_func._search_domain.shape[0] - num_fidelity) ])
# python main.py [obj_func_name] [method_name] [num_to_sample] [job_id] # example: python main.py Branin KG 4 1000 1 # you can define your own obj_function and then just change the objective_func object below, and run this script. argv = sys.argv[1:] obj_func_name = str(argv[0]) method = str(argv[1]) num_to_sample = int(argv[2]) job_id = int(argv[3]) # constants num_func_eval = 60 num_iteration = int(num_func_eval / num_to_sample) + 1 obj_func_dict = {'Branin': synthetic_functions.Branin(), 'Rosenbrock': synthetic_functions.Rosenbrock(), 'Hartmann3': synthetic_functions.Hartmann3(), 'Hartmann6': synthetic_functions.Hartmann6()} #'CIFAR10': real_functions.CIFAR10(), #'KISSGP': real_functions.KISSGP()} objective_func = obj_func_dict[obj_func_name] dim = int(objective_func._dim) num_initial_points = int(objective_func._num_init_pts) num_fidelity = objective_func._num_fidelity inner_search_domain = pythonTensorProductDomain([ClosedInterval(objective_func._search_domain[i, 0], objective_func._search_domain[i, 1]) for i in xrange(objective_func._search_domain.shape[0]-num_fidelity)]) cpp_search_domain = cppTensorProductDomain([ClosedInterval(bound[0], bound[1]) for bound in objective_func._search_domain]) cpp_inner_search_domain = cppTensorProductDomain([ClosedInterval(objective_func._search_domain[i, 0], objective_func._search_domain[i, 1]) for i in xrange(objective_func._search_domain.shape[0]-num_fidelity)])