Exemple #1
0
    def __get_best_candidate(self, conductance, edge_cover, stats):
        membership = {}
        max_conductance = conductance
        for (left_node, right_node) in edge_cover:
            candidate_node = left_node
            if left_node not in self.honests_graph.structure:
                candidate_node = right_node

            candidate_edge = (left_node, right_node)

            candidate_graph = sypy.CustomGraph(
                self.honests_graph.structure.copy()
            )
            candidate_graph.structure.add_edges_from([candidate_edge])

            (new_conductance, new_cover) = stats.normalized_conductance(
                candidate_graph,
                edge_cover=True
            )

            if new_conductance > max_conductance:
                max_conductance = new_conductance
                membership = {
                    "node": candidate_node,
                    "edge": candidate_edge,
                    "cover": new_cover
                }

        return (membership, max_conductance)
Exemple #2
0
    def largest_connected_component(self):
        cc = nx.connected_components(self.graph.structure)
        lcc_structure = self.graph.structure.subgraph(
            max(cc, key=len)
        )

        lcc_graph = sypy.CustomGraph(lcc_structure)
        return lcc_graph
Exemple #3
0
    def __setup_network_graph(self):
        if self.custom_graph != None:
            self.graph = self.custom_graph
            self.known_honests = []
            self.is_stitched = True
            return
        structure = nx.disjoint_union(self.left_region.graph.structure,
                                      self.right_region.graph.structure)

        return sypy.CustomGraph(structure)
Exemple #4
0
    def __createSyPyNetwork__(nodes_val, id_to_edges):
        """ Internal. Converts a given simulation into a SyPy-friendly 'network' 
		object that allows utilizing other (GSD-based) detection algorithms.
		Finds the largest connected component, and then creates a graph out of
		the bidirectional edges and corresponding nodes. """
        all_ids = {node.id for node in nodes_val}
        hon_ids = {node.id for node in nodes_val if node.type == "hon"}
        syb_ids = [node.id for node in nodes_val if node.type == "syb"]
        mal_ids = [node.id for node in nodes_val if node.type == "mal"]
        succ_edges = set()
        bidir_edges = []
        for node_id in all_ids:
            for edge in id_to_edges[node_id]:
                if edge.successful:
                    src_id = edge.node_src.id
                    dst_id = edge.node_dst.id
                    if (dst_id, src_id) in succ_edges:
                        bidir_edges += [(dst_id, src_id)]
                    else:
                        succ_edges.add((src_id, dst_id))
        nx_graph = nx.Graph()
        nx_graph.add_nodes_from(all_ids)
        nx_graph.add_edges_from(bidir_edges)
        cc_graph = max(nx.connected_component_subgraphs(nx_graph), key=len)
        cc_nodes = cc_graph.nodes()
        cc_edges = []
        for edge in bidir_edges:
            if edge[0] in cc_nodes and edge[1] in cc_nodes:
                cc_edges += [edge]
        nx_graph = nx.Graph()
        nx_graph.add_nodes_from(cc_nodes)
        nx_graph.add_edges_from(cc_edges)
        initial_sybils = list(set(all_ids) - set(cc_nodes))
        honest_edge_counts = {node_id: 0 for node_id in cc_nodes}
        for edge in cc_edges:
            if edge[0] in hon_ids and edge[1] in hon_ids:
                honest_edge_counts[edge[0]] += 1
                honest_edge_counts[edge[1]] += 1
        known_honests = [
            sorted(honest_edge_counts.items(),
                   key=lambda kv: kv[1],
                   reverse=True)[0][0]
        ]
        network = sypy.Network(None,
                               None,
                               "test",
                               custom_graph=sypy.CustomGraph(nx_graph))
        network.set_data(original_nodes=all_ids,
                         sybils=syb_ids,
                         malicious=mal_ids,
                         known_honests=known_honests,
                         initial_sybils=initial_sybils)
        return network
Exemple #5
0
import sys
sys.path.append("../")

import sypy
import networkx as nx


if __name__ == "__main__":

    print "\n\nCustom graph..."
    nx_graph = nx.Graph()
    nx_graph.add_nodes_from([0,1,2])
    nx_graph.add_edges_from([(0,1), (1,2), (2,0)])

    graph = sypy.CustomGraph(nx_graph)
    stats = graph.get_graph_stats()
    print "order={0}, size={1}, is_connected={2}".format(
        stats.order,
        stats.size,
        stats.is_connected
    )

    print "\n\nImported GEXF graph..."
    graph = sypy.ImportedGEXFGraph("datasets/ca-AstroPh.gexf")
    stats = graph.get_graph_stats()
    print "order={0}, size={1}, is_connected={2}, num_cc={3}".format(
        stats.order,
        stats.size,
        stats.is_connected,
        stats.num_cc
Exemple #6
0
 def __init__(self, network):
     BaseDetector.__init__(self, network)
     self.honests_graph = sypy.CustomGraph(
         self.network.graph.structure.subgraph(self.network.known_honests)
     )
Exemple #7
0
    def __setup_network_graph(self):
        structure = nx.disjoint_union(self.left_region.graph.structure,
                                      self.right_region.graph.structure)

        return sypy.CustomGraph(structure)