def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Create system sim = system_init() # Add external inputs to neural network sim.add_external_inputs_to_network(0.1 * np.ones((len(sim.time), 4))) # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) if DEFAULT["save_figures"] is False: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.D = 2. # To change a network parameter # Similarly to change w -> N_params.w = (4x4) array # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, :2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 6, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_freq = 1 #hz ampl_sin = 1 phase_difference_1_2 = np.pi act1 = np.ones((len(time), 1)) act2 = np.ones((len(time), 1)) for i in range(len(time)): act1[i, 0] = ampl_sin * (1 + np.sin(2 * np.pi * sin_freq * time[i])) act2[i, 0] = ampl_sin * ( 1 + np.sin(2 * np.pi * sin_freq * time[i] + phase_difference_1_2)) activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Activations') plt.title('Sine wave activations for both muscles') plt.plot(time, act1) plt.plot(time, act2) plt.legend(("activation muscle1", "activation muscle2")) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2b(): """ Main function to run for Exercise 2b. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 20 # Maximum simulation time time = np.arange(0., t_max, 0.005) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim1 = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent #act1 = np.ones((len(time), 1)) * 1. #act2 = np.ones((len(time), 1)) * 0.05 act1 = np.array([np.sin(time)]).T act2 = np.array([-np.sin(time)]).T activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim1.add_muscle_activations(activations) # Simulate the system for given time sim1.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by #sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim1.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res1 = sim1.results() sim2 = SystemSimulation(sys) # Instantiate Simulation object sim2.add_muscle_activations(activations) # Simulate the system for given time sim2.initalize_system(x0, time) # Initialize the system state #add perturbation sim2.sys.pendulum_sys.parameters.PERTURBATION = True # Integrate the system for the above initialized state and time sim2.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res2 = sim2.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim1.sys.muscle_sys.Muscle1.results muscle2_results = sim1.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res1[:, 1], res1[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Pendulum with perturbation') plt.title('Pendulum Phase') plt.plot(res2[:, 1], res2[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Activation Wave Forms') plt.title('Activation Wave Forms') plt.plot(time, act1) plt.plot(time, act2) plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend(('Actication muscle 1', 'Activation muscle 2')) plt.grid poincare_crossings(res1, 0.5, 1, "poincare_cross") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation1 = SystemAnimation(res1, pendulum, muscles) simulation2 = SystemAnimation(res2, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation1.animate() simulation2.animate()
def exercise2(): """ Main function to run for Exercise 2. """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # 2a : set of muscle 1 attachment points m1_origin = np.array([[-0.17, 0.0]]) # Origin of Muscle 1 m1_insertion = np.array([[0.0, -0.17], [0.0, -0.3], [0.0, -0.4], [0.0, -0.5]]) # Insertion of Muscle 1 theta = np.linspace(-np.pi/2,np.pi/2) m_lengths = np.zeros((len(m1_insertion),len(theta))) m_moment_arms = np.zeros((len(m1_insertion),len(theta))) leg=[] for i in range(0,len(m1_insertion)): m_lengths[i,:]=np.sqrt(m1_origin[0,0]**2 + m1_insertion[i,1]**2 + 2 * np.abs(m1_origin[0,0]) * np.abs(m1_insertion[i,1]) * np.sin(theta)) m_moment_arms[i,:]= m1_origin[0,0] * m1_insertion[i,1] * np.cos(theta) / m_lengths[i,:] leg.append('Origin: {}m, Insertion: {}m'.format(m1_origin[0,0],m1_insertion[i,1])) # Plotting plt.figure('2a length') plt.title('Length of M1 with respect to the position of the limb') for i in range(0,len(m_lengths)): plt.plot(theta*180/np.pi, m_lengths[i,:]) plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.11,0.11), ls='dashed') leg.append('l_opt') plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.13,0.13), ls='dashed') leg.append('l_slack') plt.xlabel('Position [deg]') plt.ylabel('Muscle length [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_length.png') plt.figure('2a moment') plt.title('Moment arm over M1 with respect to the position of the limb') for i in range(0,len(m_moment_arms)): plt.plot(theta*180/np.pi, m_moment_arms[i,:]) plt.xlabel('Position [deg]') plt.ylabel('Moment arm [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_moment.png') # 2b : simple activation wave forms # Muscle 2 attachement point m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin[0,:], m1_insertion[0,:]]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi/4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_frequency = 2 #Hz amp_stim = 1 phase_shift = np.pi act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) for i in range(0,len(time)): act1[i,0] = amp_stim*(1+np.sin(2*np.pi*sin_frequency*time[i]))/2 act2[i,0] = amp_stim*(1+ np.sin(2*np.pi*sin_frequency*time[i] + phase_shift))/2 plt.figure('2b activation') plt.plot(time,act1) plt.plot(time,act2) plt.legend(["Activation for muscle 1", "Activation for muscle 2"]) plt.title('Activation for muscle 1 and 2 with simple activation wave forms') plt.xlabel("Time [s]") plt.ylabel("Activation") plt.savefig('2_b_activation.png') plt.show() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Plotting the results plt.figure('2b phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.savefig('2_b_phase.png') plt.show() plt.figure('2b oscillations') plt.title('Pendulum Oscillations') plt.plot(time,res[:, 1]) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') plt.grid() plt.savefig('2_b_oscillations.png') plt.show() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # 2c : relationship between stimulation frequency and amplitude # Effect of frequency stim_frequency_range = np.array([0.05,0.1,0.5,1,5,10,50,100,500]) #Hz stim_amp = 1 phase_shift = np.pi frequency_pend=np.zeros(len(stim_frequency_range)) amplitude_pend=np.zeros(len(stim_frequency_range)) for j,stim_frequency in enumerate(stim_frequency_range): period = 1/stim_frequency t_max = 10*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 # Plotting plt.figure('2c : effect of frequency') plt.subplot(121) plt.loglog(stim_frequency_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.loglog(stim_frequency_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_frequency.png') plt.show() # Effect of amplitude stim_frequency = 10 #Hz stim_amp_range = np.arange(0,1.1,0.1) phase_shift = np.pi frequency_pend=np.zeros(len(stim_amp_range)) amplitude_pend=np.zeros(len(stim_amp_range)) for j,stim_amp in enumerate(stim_amp_range): period = 1/stim_frequency t_max = 5*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 frequency_pend[0] = 0.0; # Plotting plt.figure('2c : effect of amplitude') plt.subplot(121) plt.plot(stim_amp_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.plot(stim_amp_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_amplitude.png') plt.show()
def exercise3a(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum P_params.PERTURBATION = True pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.tau = [0.02, 0.02, 0.1, 0.1] N_params.b = [3.0, 3.0, -3.0, -3.0] N_params.D = 1.0 # To change a network parameter N_params.w = np.asarray([[0.0, -5.0, -5.0, 0.0], [-5.0, 0.0, 0.0, -5.0], [5.0, -5.0, 0.0, 0.0], [-5.0, 5.0, 0.0, 0.0]]) # Similarly to change w -> N_params.w = (4x4) array print(N_params.w) ############################# Exercise 3A ###################### N_params.w = np.transpose( np.asarray([[0, -1, 1, -1], [-1, 0, -1, 1], [-1, 0, 0, 0], [0, -1, 0, 0]])) * 5 print(N_params.w, N_params.D, N_params.tau, N_params.b, N_params.exp) # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system sys.add_neural_system( neural_network) # Add the neural network to the system ##### Time ##### t_max = 2. # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([[-0.5, 0], [-0.25, -0.25], [0., 0.], [0.5, 0]]) # Pendulum initial condition for i in x0_P: # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-1.5, 1, 2.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((i, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # wave_h1 = np.sin(time*3)*2 #makes a sinusoidal wave from 'time' # wave_h2 = np.sin(time*3 + np.pi)*1 #makes a sinusoidal wave from 'time' # # wave_h1[wave_h1<0] = 0 #formality of passing negative values to zero # wave_h2[wave_h2<0] = 0 #formality of passing negative values to zero # # act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 # act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # column = np.ones((len(time), 1)) # ext_in = np.hstack((act1, column, act2, column)) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state sim.sys.pendulum_sys.parameters.PERTURBATION = False # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results: Position(phase) vs time plt.figure('Pendulum Phase') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, 1]) #to plot pendulum Position (phase) # plt.plot(res[:, 0], time) #to plot position # plt.plot(res[:, 0], res[:, -5:-1]) # to Plot neurons' states plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.grid() # Plotting the results: Velocity vs Position (phase) plt.figure('Pendulum Vel v.s. Phase') plt.title('Pendulum Vel v.s. Phase') plt.plot(res[:, 1], res[:, 2]) #to plot Velocity vs Position (phase) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Velocity vs time plt.figure('Pendulum Velocity') plt.title('Pendulum Velocity') plt.plot(res[:, 0], res[:, 2]) #to plot Velocity vs Position plt.xlabel('time [s]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Output of the network plt.figure('Network output') plt.title('Network output') plt.plot(res[:, 0], res[:, -1], label='neuron1') #to plot Velocity vs Position plt.plot(res[:, 0], res[:, -2], label='neuron2') plt.plot(res[:, 0], res[:, -3], label='neuron3') plt.plot(res[:, 0], res[:, -4], label='neuron4') plt.xlabel('time [s]') plt.ylabel('Stimulation ') plt.legend(loc='upper right') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ ''' sim = system_init() # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent act1 = np.ones((len(sim.time), 1)) * 0.05 act2 = np.ones((len(sim.time), 1)) * 0.05 activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_stimulations(activations) #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() ''' ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2a pylog.info("2a") theta = np.arange(np.pi / 4, np.pi * 3 / 4, 0.001) temp_a1 = 0.35 ratios = [ 0.2, 0.5, 1., 2., 5., ] L2_s = [] h2_s = [] for temp_ratio in ratios: temp_a2 = temp_a1 * temp_ratio temp_L2 = np.sqrt(temp_a1 * temp_a1 + temp_a2 * temp_a2 + 2 * temp_a1 * temp_a2 * np.cos(theta)) temp_h2 = (temp_a1 * temp_a2 * np.sin(theta)) / temp_L2 L2_s = L2_s + [temp_L2] h2_s = h2_s + [temp_h2] plt.figure( '2a. Relationship between muscle length and pendulum angular position') plt.title( 'Relationship between muscle length and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, L2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '2a. Relationship between moment arm and pendulum angular position') plt.title('Relationship between moment arm and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, h2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Moment Arm [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2b pylog.info("2b") #initialization P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## ADD SYSTEMS ########## # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ########## INITIALIZATION ########## t_max = 2 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.0]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ########## System Simulation ########## sim = SystemSimulation(sys) # Instantiate Simulation object # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state omega = 1.5 sin_act_1 = np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 #sin_act_2=np.sin(2*np.pi*omega*time+np.pi/2).reshape(len(time),1) sin_act_2 = -np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) plt.figure('2b. Activation wave') plt.title('Activation wave') plt.plot(time, sin_act_1, label='Activation 1') plt.plot(time, sin_act_2, label='Activation 2') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.grid() plt.legend() # without pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle without pertubation') plt.title('Pendulum Phase without pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() # with pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle with pertubation') plt.title('Pendulum Phase with pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2c pylog.info("2c") # different frequencies omegas = 1.5 * np.array([0.5, 2.]) positions = [] vels = [] for temp_omega in omegas: sin_act_1 = np.sin(2 * np.pi * temp_omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 sin_act_2 = -np.sin(2 * np.pi * temp_omega * time).reshape( len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions = positions + [res[:, 1]] vels = vels + [res[:, 2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(omegas)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Velocity [rad/s]') temp_legends = [ 'ratio of frequency = ' + format((temp_omega / 1.5), '.2f') for temp_omega in omegas ] plt.legend(temp_legends) plt.grid() plt.show() ''' # different frequencies omegas=1.5*np.array([0.2,0.5,1.,2.,5.]) positions=[] vels=[] for temp_omega in omegas: sin_act_1=np.sin(2*np.pi*temp_omega*time).reshape(len(time),1) sin_act_1[sin_act_1<0]=0 sin_act_2=np.sin(2*np.pi*temp_omega*(np.pi/6+time)).reshape(len(time),1) sin_act_2[sin_act_2<0]=0 activations = np.hstack((sin_act_1,sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions=positions+[res[:, 1]] vels=vels+[res[:,2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(ratios)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends=['ratio of frequency = '+ format((temp_omega/1.5),'.2f') for temp_omega in omegas] plt.legend(temp_legends) plt.grid() plt.show() ''' # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys) if not DEFAULT["save_figures"]: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ sim = system_init() # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent # act1 = np.ones((len(sim.time), 1)) * 0.05 # act2 = np.ones((len(sim.time), 1)) * 0.05 A= 0.95 act1 = 0.05+ np.absolute(np.expand_dims((np.sin(2.*np.pi*sim.time)),axis=1))*A act2 = 0.05+ np.absolute(np.expand_dims((np.cos(2.*np.pi*sim.time)),axis=1))*A #Frequency Variation act11 = 0.05 + np.absolute(np.expand_dims((np.sin(2.*np.pi*sim.time*0.25)),axis=1))*A act21 = 0.05 + np.absolute(np.expand_dims((np.cos(2.*np.pi*sim.time*0.25)),axis=1))*A act12 = 0.05 + np.absolute(np.expand_dims((np.sin(2.*np.pi*sim.time*0.5)),axis=1))*A act22 = 0.05 + np.absolute(np.expand_dims((np.cos(2.*np.pi*sim.time*0.5)),axis=1))*A act13 = 0.05 + np.absolute(np.expand_dims((np.sin(2.*np.pi*sim.time*2)),axis=1))*A act23 = 0.05 + np.absolute(np.expand_dims((np.cos(2.*np.pi*sim.time*2)),axis=1))*A act14 = 0.05 + np.absolute(np.expand_dims((np.sin(2.*np.pi*sim.time*4)),axis=1))*A act24 = 0.05 + np.absolute(np.expand_dims((np.cos(2.*np.pi*sim.time*4)),axis=1))*A activations = np.hstack((act1, act2)) activations1 = np.hstack((act11, act21)) activations2 = np.hstack((act12, act22)) activations3 = np.hstack((act13, act23)) activations4 = np.hstack((act14, act24)) plt.figure('Activations forms') plt.plot(sim.time, act1, label = "Activation 1 - Sinus") plt.plot(sim.time, act2, label = "Activation 2 - Cosinus") plt.legend(loc="best") plt.xlabel('Time [s]') plt.ylabel('Amplitude') # Method to add the muscle activations to the simulation sim.add_muscle_stimulations(activations) #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results #PARTIE 2A theta = np.linspace(np.pi/4, 3*np.pi/4,50) # plot muscle 1 length plt.figure('Muscle Length') L1 = np.sqrt(sim.sys.muscle_sys.a1_m1**2 + sim.sys.muscle_sys.a2_m1**2 - 2*sim.sys.muscle_sys.a1_m1*sim.sys.muscle_sys.a2_m1*np.cos(theta)) plt.plot(theta, L1, label = 'Muscle 1') print(sim.sys.muscle_sys.a1_m1) print(sim.sys.muscle_sys.a2_m1) print(sim.sys.muscle_sys.a1_m2) print(sim.sys.muscle_sys.a2_m2) # plot muscle 2 length L2 = np.sqrt(sim.sys.muscle_sys.a1_m2**2 + sim.sys.muscle_sys.a2_m2**2 + 2*sim.sys.muscle_sys.a1_m2*sim.sys.muscle_sys.a2_m2*np.cos(theta)) plt.plot(theta, L2, label = 'Muscle 2') plt.xlabel('Theta [rad]') plt.ylabel('Muscle Length [m]') plt.legend(loc="upper left") plt.show() plt.figure('Muscle moment arm') h1 = sim.sys.muscle_sys.a1_m1*sim.sys.muscle_sys.a2_m1*np.sin(theta)/L1 plt.plot(theta, h1, label = 'Muscle 1') h2 = sim.sys.muscle_sys.a1_m2*sim.sys.muscle_sys.a2_m2*np.sin(theta)/L2 plt.plot(theta, h2, label = 'Muscle 2') plt.xlabel('Theta [rad]') plt.ylabel('Moment arm of muscle [m]') plt.legend(loc="upper left") plt.show() #PARTIE 2B plt.figure('Pendulum') plt.figure('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) #PARTIE2C # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2], label ="Initial f=1") sim.add_muscle_stimulations(activations1) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res1 = sim.results() plt.plot(res1[:, 1], res1[:, 2], label="f=0.25") sim.add_muscle_stimulations(activations2) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res2 = sim.results() plt.plot(res2[:, 1], res2[:, 2], label="f=0.5") sim.add_muscle_stimulations(activations3) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res3 = sim.results() plt.plot(res3[:, 1], res3[:, 2], label="f=2") sim.add_muscle_stimulations(activations4) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res4 = sim.results() plt.plot(res4[:, 1], res4[:, 2], label="f=4") plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.legend(loc="best") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys ) if not DEFAULT["save_figures"]: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def plotExternalDrive(sys,x0,ext_in,typ='low'): ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) #ext_in = np.ones((len(time), 4)) #ext_in[:,2] = 0.2 #ext_in[:,3] = 0.2 sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 #res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the phase fig = plt.figure('Pendulum Phase, {} drive'.format(typ)) plt.title('Pendulum Phase, {} drive'.format(typ)) plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumPhase{}Drive.png'.format(typ)) # Plotting the state evolution fig = plt.figure('Pendulum State, {} drive'.format(typ)) plt.title('Pendulum State, {} drive'.format(typ)) plt.plot(res[:, 0], res[:, 1], label='position [rad]') plt.plot(res[:, 0], res[:, 2], label='speed [rad/s]') plt.xlabel('Time [s]') plt.ylabel('') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumState{}drive.png'.format(typ)) # Plotting the neuronal activation # Access the neurons outputs: # [t] theta theta. A1 lCE1 A2 lCE2 m1 m2 m3 m4 fig = plt.figure('Neuron output, {} drive'.format(typ)) plt.title('Membrane potentials') plt.plot(res[:, 0], res[:, 7],label='m1') plt.plot(res[:, 0], res[:, 8],label='m2') plt.plot(res[:, 0], res[:, 9],label='m3') plt.plot(res[:, 0], res[:, 10],label='m4') plt.xlabel('Time [s]') plt.ylabel('Potential') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/MembranePotentials{}drive.png'.format(typ)) if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters # Similarly to change w -> N_params.w = (4x4) array # From lecture 4, slide 85 -> Generate oscillations !! N_params.D = 2. N_params.tau = [0.02,0.02,0.1,0.1] N_params.b = [3.0,3.0,-3.0,-3.0] N_params.w = [[0,-5,-5,0], # 1 <- 2 [-5,0,0,-5], [5,-5,0,-5], [-5,5,0,0]] # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) #ext_in = np.ones((len(time), 4)) #ext_in[:,2] = 0.2 #ext_in[:,3] = 0.2 #sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 #res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the phase fig = plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumPhase.png') # Plotting the neuronal activation # Access the neurons outputs: # [t] theta theta. A1 lCE1 A2 lCE2 m1 m2 m3 m4 fig = plt.figure('Neuron output') plt.title('Membrane potentials') plt.plot(res[:, 0], res[:, 7],label='m1') plt.plot(res[:, 0], res[:, 8],label='m2') plt.plot(res[:, 0], res[:, 9],label='m3') plt.plot(res[:, 0], res[:, 10],label='m4') plt.xlabel('Time [s]') plt.ylabel('Potential') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/MembranePotentials.png') if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate() # 3.b ext_in = np.ones((len(time), 4))*0.0 plotExternalDrive(sys,x0,ext_in,typ='low') ext_in = np.ones((len(time), 4)) plotExternalDrive(sys,x0,ext_in,typ='high') ext_in = np.ones((len(time), 4)) ext_in[:,0] *= 0.1 ext_in[:,1] *= 0.1 plotExternalDrive(sys,x0,ext_in,typ='asymmetric')
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ############Exercise 2A ############################################### # rigth after creating and attaching both muscles: print(m1_origin, m2_origin) m1a1 = abs(abs(m1_origin[0]) - abs(m1_origin[1])) m1a2 = abs(abs(m1_insertion[0]) - abs(m1_insertion[1])) m1a1 = m1_origin[0] - m1_origin[1] m1a2 = m1_insertion[0] - m1_insertion[1] m2a1 = m2_origin[0] - m2_origin[1] m2a2 = m2_insertion[0] - m2_insertion[1] print(m1a1, m1a2) fromtheta(M1, m1a1, m1a2, 1) fromtheta(M2, m2a1, m2a2, 2) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 5 # Maximum simulation time time = np.arange(0., t_max, 0.002) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent wave_h1 = np.sin(time * 3) * 1 #makes a sinusoidal wave from 'time' wave_h2 = np.sin(time * 3 + np.pi) * 1 #makes a sinusoidal wave from 'time' wave_h1[wave_h1 < 0] = 0 #formality of passing negative values to zero wave_h2[wave_h2 < 0] = 0 #formality of passing negative values to zero act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # Plotting the waveforms plt.figure('Muscle Activations') plt.title('Muscle Activation Functions') plt.plot(time, wave_h1, label='Muscle 1') plt.plot(time, wave_h2, label='Muscle 2') plt.xlabel('Time [s]') plt.ylabel('Muscle Excitation') plt.legend(loc='upper right') plt.grid() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum_phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Amplidute stimulation plt.figure('Amplidute stimulation') plt.title('Amplidute stimulation') plt.plot(time, res[:, 1], label='Stimul. 0.2') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() # Plotting the results: frequency stimulation plt.figure('Frequency stimulation') plt.title('Frequency stimulation') plt.plot(time, res[:, 1], label='w: 3 rad/s') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() poincare_crossings(res, -2, 1, "Pendulum") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 3 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time simsin = SystemSimulation(sys) # Instantiate Simulation object #simsquare = SystemSimulation(sys) # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent label_test = [] """" definition of different kinds of activation for each muscle. Amplitude1 and amplitude2 allows to play with the amplitude of activation on each muscle (RMS value for the sinus activation) act1 and act2 activates the muscle all the time. actsin activates with sin(wi) if sin(wi)>0 (no negative activation). The 2 muscles are in opposition of phase. actsquare does the same with a square signal. """ amplitude1 = 1. amplitude2 = 1. #declaration of the activations act1 = np.ones((len(time), 1)) * amplitude1 act2 = np.ones((len(time), 1)) * amplitude2 actsin = np.ones((len(time), 1)) actsin2 = np.ones((len(time), 1)) actsquare = np.ones((len(time), 1)) actsquare2 = np.ones((len(time), 1)) wlist = [0.1, 0.05, 0.01, 0.005] k = 0 for w in wlist: #generation of the signals at pulsation w for i in range(len(actsin)): if math.sin(w * i) <= 0: actsin[i] = 0 actsin2[i] = abs(amplitude2 * math.sqrt(2) * math.sin(w * i)) else: actsin[i] = abs(amplitude1 * math.sqrt(2) * math.sin(w * i)) actsin2[i] = 0 for i in range(len(actsquare)): if i % (2 * math.pi / w) <= math.pi / w: actsquare[i] = amplitude1 actsquare2[i] = 0 else: actsquare[i] = 0 actsquare2[i] = amplitude2 """ uncomment this to plot the activation signals""" # #Plot of the activation through time # plt.figure # plt.plot(actsquare) # plt.plot(actsin) # plt.title("Activations wave forms used") # plt.xlabel("Time (s)") # plt.ylabel("Activation amplitude (.)") """ put as parameters the activation you want (act1/2, actsin1/2 or actsquare1/2)""" activationssin = np.hstack((actsquare, actsquare2)) #activationssquare = np.hstack((actsquare, actsquare2)) # Method to add the muscle activations to the simulation simsin.add_muscle_activations(activationssin) #simsquare.add_muscle_activations(activationssquare) # Simulate the system for given time simsin.initalize_system(x0, time) # Initialize the system state #simsquare.initalize_system(x0, time) #: If you would like to perturb the pedulum model then you could do # so by """perturbation of the signal""" simsin.sys.pendulum_sys.parameters.PERTURBATION = False #simsquare.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time simsin.simulate() #simsquare.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 ressin = simsin.results() #ressquare = simsquare.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = simsin.sys.muscle_sys.Muscle1.results muscle2_results = simsin.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(ressin[:, 1], ressin[:, 2]) label_test.append('w=' + str(wlist[k])) k = k + 1 #plt.plot(ressquare[:, 1], ressquare[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.legend(label_test) plt.grid() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulationsin = SystemAnimation(ressin, pendulum, muscles) #simulationsquare = SystemAnimation(ressquare, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulationsin.animate() #simulationsquare.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ ''' # Create system sim = system_init() # Add external inputs to neural network sim.add_external_inputs_to_network(np.ones((len(sim.time), 4))) # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() ''' ###################################################### # initialization ########## PENDULUM ########## P_params = PendulumParameters() P_params.L = 1.0 P_params.m = 0.25 pendulum = PendulumSystem(P_params) pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## m1_param = MuscleParameters() m1_param.f_max = 200. m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() m2_param.f_max = 200. m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) m2 = Muscle('m2', m2_param) muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) ######## Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) m1_insertion = np.asarray([0.0, 0.15]) m2_origin = np.asarray([0.0, 0.8]) m2_insertion = np.asarray([0.0, -0.3]) muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ##### Time ##### t_max = 2.5 time = np.arange(0., t_max, 0.001) ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 3a pylog.info("3a") d = 1. tau = np.array([0.02, 0.02, 0.1, 0.1]) b = np.array([3., 3., -3., -3.]) w = np.zeros((4, 4)) w[0, 1] = w[0, 3] = w[1, 0] = w[1, 2] = -5 w[0, 2] = w[1, 3] = 5 w[2, 0] = w[3, 1] = -5 w = w.T N_params = NetworkParameters() N_params.D = d N_params.tau = tau N_params.b = b N_params.w = w neural_network = NeuralSystem(N_params) sys = System() sys.add_pendulum_system(pendulum) sys.add_muscle_system(muscles) sys.add_neural_system(neural_network) x0_P = np.asarray([np.pi / 2, 0.]) l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0_N = np.asarray([-0.5, 1, 0.5, 1]) x0 = np.concatenate((x0_P, x0_M, x0_N)) sim = SystemSimulation(sys) sim.initalize_system(x0, time) sim.simulate() res = sim.results() positions = res[:, 1] vels = res[:, 2] plt.figure('3a. Activation with time ') plt.title('Activation with time') plt.plot(res[:, 0], res[:, 3], label="Activation 1") plt.plot(res[:, 0], res[:, 5], label="Activation 2") plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend() plt.grid() plt.show() # Plotting the results plt.figure('3a. Pendulum state with time') plt.title('Pendulum state with time') plt.plot(res[:, 0], positions) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') plt.grid() plt.show() # Plotting the results plt.figure('3a. Pendulum phase plot') plt.title('Pendulum phase plot') plt.plot(positions, vels) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.show() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 3b pylog.info("3b") all_positions = [] all_vels = [] all_time = [] all_act_1 = [] all_act_2 = [] external_drives = np.array([0, 0.2, 0.5, 1., 2., 5.]) for temp_drive in external_drives: sim = SystemSimulation(sys) sim.initalize_system(x0, time) sim.add_external_inputs_to_network( np.ones((len(sim.time), 4)) * temp_drive) sim.simulate() res = sim.results() all_time = all_time + [res[:, 0]] all_positions = all_positions + [res[:, 1]] all_vels = all_vels + [res[:, 2]] all_act_1 = all_act_1 + [res[:, 3]] all_act_2 = all_act_2 + [res[:, 5]] plt.figure('3a. Activation with time by different external drives') plt.title('Activation with time by different external drives') for i in range(len(external_drives)): plt.plot(all_time[i], all_act_1[i]) plt.plot(all_time[i], all_act_2[i]) plt.xlabel('Time [s]') plt.ylabel('Activation') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure('3b. Pendulum state with time by different external drives') plt.title('Pendulum state with time by different external drives') for i in range(len(external_drives)): plt.plot(all_time[i], all_positions[i]) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure('3a. Pendulum phase plot by different external drives') plt.title('Pendulum phase plot by different external drives') for i in range(len(external_drives)): plt.plot(all_positions[i], all_vels[i]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) if DEFAULT["save_figures"] is False: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 3 # Maximum simulation time time = np.arange(0., t_max, 0.004) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent ''' #act1 = np.ones((len(time), 1)) * 1. #act2 = np.ones((len(time), 1)) * 0.05 act1 = (np.sin((time/t_max)*10*np.pi)+1)/2 act2 = (np.sin((time/t_max)*10*np.pi + np.pi)+1)/2 act1 = np.reshape(act1, (len(time),1)) act2 = np.reshape(act2, (len(time),1)) activations = np.hstack((act1, act2)) # Plotting the results plt.figure('Activations') plt.title('Muscle activations') plt.plot(time, act1, label = 'Activation muscle 1') plt.plot(time, act2, label = 'Activation muscle 2') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend() plt.grid() # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) ''' max_amplitude = np.zeros([10, 10]) i = 0 j = 0 # Simulate the system for given time for activation_max in np.arange(0, 1, 0.9): i = 0 for frequency in np.arange(1, 10, 4): act1 = ((np.sin( (time / t_max) * frequency * np.pi) + 1) / 2) * activation_max act2 = ((np.sin((time / t_max) * frequency * np.pi + 1) + 1) / 2) * activation_max act1 = np.reshape(act1, (len(time), 1)) act2 = np.reshape(act2, (len(time), 1)) activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results max_amplitude[i, j] = np.max(np.abs(res[:, 1])) i += 1 # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2], label='activation %.2f - frequency %f' % (activation_max, frequency)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() j += 1 plt.figure('Amplitude') fig, ax1 = plt.subplots(1, 1) ax1.set_xticklabels(np.array([0, 0, 0.2, 0.4, 0.8, 1])) ax1.set_yticklabels(np.array([0, 1, 3, 5, 7, 9])) plt.title('Ampliudes') plt.imshow(max_amplitude, aspect='equal', origin='lower') plt.xlabel('Activation') plt.ylabel('Frequncy') # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ #----------------# Exercise 2a #----------------# theta = np.linspace(-np.pi/4, np.pi/4,num=50) h1=[] a1= 1 a2a1=np.linspace(0.5,2,num=4) plt.figure('2a_Muscle_Length_vs_Theta') plt.title('Muscle Length vs Theta') plt.xlabel('Position [rad]') plt.ylabel('Muscle length [m]') plt.grid() plt.figure('2a_Moment_arm_vs_Theta') plt.title('Moment arm vs Theta') plt.xlabel('Position [rad]') plt.ylabel('Moment arm [m]') plt.grid() for i in range(0,len(a2a1)): a2=a2a1[i]*a1 L1=(np.sqrt(a1**2+a2**2+2*a1*a2*np.sin(theta))) h1=((a1*a2*np.cos(theta))/L1) plt.figure('2a_Muscle_Length_vs_Theta') plt.plot(theta,L1,label=('a2/a1 = %.1f' %(a2a1[i]))) plt.figure('2a_Moment_arm_vs_Theta') plt.plot(theta,h1,label=('a2/a1= %.1f' %(a2a1[i]))) plt.figure('2a_Muscle_Length_vs_Theta') plt.legend() plt.figure('2a_Moment_arm_vs_Theta') plt.legend() #----------------# Exercise 2a finished #----------------# # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi/4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent activationFunction = ['sin','square'] for idx, act in enumerate(activationFunction): #----------------# Exercise 2c #----------------# w = np.linspace(0.2,4,4) # w = 0.5 # a = np.linspace(0.1,1,4) plt.figure('2c_LimitCycle_'+str(act)) # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.title('Pendulum Phase') plt.figure('2c_Amplitude_'+str(act)) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) plt.title('Amplitude vs. Frequency') # plt.title('Amplitude vs. Stimulation Amplitude') for i in range(0,len(w)): # for i in range(0,len(a)): # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.figure('2c_LimitCycle_'+str(act)) print('Running simulation %d out of %d'%(i+1,len(w))) # print('Running simulation %d out of %d'%(i+1,len(a))) if act == 'sin': sinAct = np.sin(2*np.pi*w[i]*time).reshape(len(time),1) # sinAct = a[i]*np.sin(2*np.pi*w*time).reshape(len(time),1) else: sinAct = signal.square(2*np.pi*w[i]*time).reshape(len(time),1) # sinAct = a[i]*signal.square(2*np.pi*w*time).reshape(len(time),1) sinFlex = sinAct.copy() sinFlex[sinAct<0] = 0 sinExt = sinAct.copy() sinExt[sinAct>0] = 0 sinExt = abs(sinExt) sinAct1 = np.ones((len(time),1)) sinAct2 = np.ones((len(time),1)) sinAct1 = sinFlex sinAct2 = sinExt sinActivations = np.hstack((sinAct1,sinAct2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(sinActivations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.plot(res[:, 1], res[:, 2], label='Act. $%s(2\cdot{}\\pi\cdot{}%.1f\cdot{}t)$'%(act,w[i])) # plt.plot(res[:, 1], res[:, 2], label='Act. $%.1f\cdot{}%s(2\cdot{}\\pi\cdot{}0.5\cdot{}t)$'%(a[i],act)) plt.figure('2c_Amplitude_'+str(act)) plt.plot(time,res[:, 1], label='Frequency = %.1f'%(w[i])) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) # plt.plot(time,res[:, 1], label='Amplitude = %.1f'%(a[i])) plt.figure('2c_LimitCycle_'+str(act)) # plt.figure('2c_LimitCycle_Amplitude_'+str(act)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() plt.figure('2c_Amplitude_'+str(act)) # plt.figure('2c_Amplitude_Amplitude_'+str(act)) plt.xlabel('Time [s]') plt.ylabel('Amplitude [rad]') plt.grid() plt.legend() #----------------# Exercise 2c finished #----------------# #----------------# Exercise 2b #----------------# w = 0.5 if act == 'sin': sinAct = np.sin(2*np.pi*w*time).reshape(len(time),1) else: sinAct = signal.square(2*np.pi*w*time).reshape(len(time),1) sinFlex = sinAct.copy() sinFlex[sinAct<0] = 0 sinExt = sinAct.copy() sinExt[sinAct>0] = 0 sinExt = abs(sinExt) sinAct1 = np.ones((len(time),1)) sinAct2 = np.ones((len(time),1)) sinAct1 = sinFlex sinAct2 = sinExt activations = np.hstack((sinAct1,sinAct2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('2b_LimitCycle_'+str(act)) plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2], label='Act. $%s(2\cdot{}\\pi\cdot{}%.1f\cdot{}t)$, Pert. ($t=3.2,\\theta = 1, \dot{\\theta} = -0.5$)' %(act,w)) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() plt.figure('2b_ActivationFunction_'+str(act)) plt.title('Activation Function') plt.plot(time, sinAct1, label='Flexor') plt.plot(time, sinAct2, label='Extensor') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.grid() plt.legend() #----------------# Exercise 2b finished #----------------# # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) #plt.close(fig) plt.show