def classify(tweet, t_mask, params, n_classes, n_chars):
    # tweet embedding
    emb_layer = tweet2vec(tweet, t_mask, params, n_chars)
    # Dense layer for classes
    l_dense = lasagne.layers.DenseLayer(emb_layer, n_classes, W=params['W_cl'], b=params['b_cl'], nonlinearity=lasagne.nonlinearities.softmax)

    return lasagne.layers.get_output(l_dense), lasagne.layers.get_output(emb_layer)
Exemple #2
0
def classify(tweet, t_mask, params, n_classes, n_chars):
    # tweet embedding
    emb_layer = tweet2vec(tweet, t_mask, params, n_chars)
    # Dense layer for classes
    l_dense = lasagne.layers.DenseLayer(emb_layer, n_classes, W=params['W_cl'], b=params['b_cl'], nonlinearity=lasagne.nonlinearities.softmax)

    return lasagne.layers.get_output(l_dense), lasagne.layers.get_output(emb_layer)