def setUpClass(cls): cls._df = pd.read_csv(cls._filename, sep=',') cls._params = dict(close=cls._df['Close'], n=10, pow1=2, pow2=30, fillna=False) cls._indicator = KAMAIndicator(**cls._params)
def setUpClass(cls): cls._df = pd.read_csv(cls._filename, sep=",") cls._params = dict(close=cls._df["Close"], window=10, pow1=2, pow2=30, fillna=False) cls._indicator = KAMAIndicator(**cls._params)
class TestKAMAIndicator(unittest.TestCase): """ https://school.stockcharts.com/doku.php?id=technical_indicators:kaufman_s_adaptive_moving_average """ _filename = 'ta/tests/data/cs-kama.csv' def setUp(self): self._df = pd.read_csv(self._filename, sep=',') self._indicator = KAMAIndicator(close=self._df['Close'], n=10, pow1=2, pow2=30, fillna=False) def tearDown(self): del(self._df) def test_kama(self): target = 'KAMA' result = self._indicator.kama() pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
from ta.volume import OnBalanceVolumeIndicator, AccDistIndexIndicator from google.cloud import storage import shutil if len(sys.argv) > 1: batch_size = 31 symbol = sys.argv[1] end = datetime.today() start = datetime(2000, 9, 1) ETH = pdr.DataReader(symbol,'yahoo',start,end) df = pd.DataFrame(data=ETH) kama_indicator = KAMAIndicator(close = df["Close"], window = 10, pow1 = 2, pow2 = 30, fillna = False) df['kama'] = kama_indicator.kama() ppo_indicator = PercentagePriceOscillator(close = df["Close"], window_slow = 20, window_fast = 10, window_sign = 9, fillna = False) df['ppo'] = ppo_indicator.ppo() roc_indicator = ROCIndicator(close = df["Close"], window = 12, fillna = False) df['roc'] = roc_indicator.roc() macd_indicator = MACD(close = df["Close"], window_slow = 20, window_fast = 12, window_sign = 9, fillna = False) df['macd'] = macd_indicator.macd() rsi_indicator = RSIIndicator(close = df["Close"], window = 14, fillna = False) df['rsi'] = rsi_indicator.rsi() aroon_indicator = AroonIndicator(close = df["Close"], window = 20, fillna = False)
def add_momentum_ta( df: pd.DataFrame, high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = "", vectorized: bool = False, ) -> pd.DataFrame: """Add trend technical analysis features to dataframe. Args: df (pandas.core.frame.DataFrame): Dataframe base. high (str): Name of 'high' column. low (str): Name of 'low' column. close (str): Name of 'close' column. volume (str): Name of 'volume' column. fillna(bool): if True, fill nan values. colprefix(str): Prefix column names inserted vectorized(bool): if True, use only vectorized functions indicators Returns: pandas.core.frame.DataFrame: Dataframe with new features. """ # Relative Strength Index (RSI) df[f"{colprefix}momentum_rsi"] = RSIIndicator(close=df[close], window=14, fillna=fillna).rsi() # Stoch RSI (StochRSI) indicator_srsi = StochRSIIndicator(close=df[close], window=14, smooth1=3, smooth2=3, fillna=fillna) df[f"{colprefix}momentum_stoch_rsi"] = indicator_srsi.stochrsi() df[f"{colprefix}momentum_stoch_rsi_k"] = indicator_srsi.stochrsi_k() df[f"{colprefix}momentum_stoch_rsi_d"] = indicator_srsi.stochrsi_d() # TSI Indicator df[f"{colprefix}momentum_tsi"] = TSIIndicator(close=df[close], window_slow=25, window_fast=13, fillna=fillna).tsi() # Ultimate Oscillator df[f"{colprefix}momentum_uo"] = UltimateOscillator( high=df[high], low=df[low], close=df[close], window1=7, window2=14, window3=28, weight1=4.0, weight2=2.0, weight3=1.0, fillna=fillna, ).ultimate_oscillator() # Stoch Indicator indicator_so = StochasticOscillator( high=df[high], low=df[low], close=df[close], window=14, smooth_window=3, fillna=fillna, ) df[f"{colprefix}momentum_stoch"] = indicator_so.stoch() df[f"{colprefix}momentum_stoch_signal"] = indicator_so.stoch_signal() # Williams R Indicator df[f"{colprefix}momentum_wr"] = WilliamsRIndicator( high=df[high], low=df[low], close=df[close], lbp=14, fillna=fillna).williams_r() # Awesome Oscillator df[f"{colprefix}momentum_ao"] = AwesomeOscillatorIndicator( high=df[high], low=df[low], window1=5, window2=34, fillna=fillna).awesome_oscillator() # Rate Of Change df[f"{colprefix}momentum_roc"] = ROCIndicator(close=df[close], window=12, fillna=fillna).roc() # Percentage Price Oscillator indicator_ppo = PercentagePriceOscillator(close=df[close], window_slow=26, window_fast=12, window_sign=9, fillna=fillna) df[f"{colprefix}momentum_ppo"] = indicator_ppo.ppo() df[f"{colprefix}momentum_ppo_signal"] = indicator_ppo.ppo_signal() df[f"{colprefix}momentum_ppo_hist"] = indicator_ppo.ppo_hist() # Percentage Volume Oscillator indicator_pvo = PercentageVolumeOscillator(volume=df[volume], window_slow=26, window_fast=12, window_sign=9, fillna=fillna) df[f"{colprefix}momentum_pvo"] = indicator_pvo.pvo() df[f"{colprefix}momentum_pvo_signal"] = indicator_pvo.pvo_signal() df[f"{colprefix}momentum_pvo_hist"] = indicator_pvo.pvo_hist() if not vectorized: # KAMA df[f"{colprefix}momentum_kama"] = KAMAIndicator(close=df[close], window=10, pow1=2, pow2=30, fillna=fillna).kama() return df
def add_momentum_ta(df: pd.DataFrame, high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = ""): """Add trend technical analysis features to dataframe. Args: df (pandas.core.frame.DataFrame): Dataframe base. high (str): Name of 'high' column. low (str): Name of 'low' column. close (str): Name of 'close' column. fillna(bool): if True, fill nan values. colprefix(str): Prefix column names inserted Returns: pandas.core.frame.DataFrame: Dataframe with new features. """ # Relative Strength Index (RSI) df[f'{colprefix}momentum_rsi'] = RSIIndicator(close=df[close], n=14, fillna=fillna).rsi() # Money Flow Indicator df[f'{colprefix}momentum_mfi'] = MFIIndicator( high=df[high], low=df[low], close=df[close], volume=df[volume], n=14, fillna=fillna).money_flow_index() # TSI Indicator df[f'{colprefix}momentum_tsi'] = TSIIndicator(close=df[close], r=25, s=13, fillna=fillna).tsi() # Ultimate Oscillator df[f'{colprefix}momentum_uo'] = UltimateOscillatorIndicator( high=df[high], low=df[low], close=df[close], s=7, m=14, len=28, ws=4.0, wm=2.0, wl=1.0, fillna=fillna).uo() # Stoch Indicator indicator = StochIndicator(high=df[high], low=df[low], close=df[close], n=14, d_n=3, fillna=fillna) df[f'{colprefix}momentum_stoch'] = indicator.stoch() df[f'{colprefix}momentum_stoch_signal'] = indicator.stoch_signal() # Williams R Indicator df[f'{colprefix}momentum_wr'] = WilliamsRIndicator(high=df[high], low=df[low], close=df[close], lbp=14, fillna=fillna).wr() # Awesome Oscillator df[f'{colprefix}momentum_ao'] = AwesomeOscillatorIndicator( high=df[high], low=df[low], s=5, len=34, fillna=fillna).ao() # KAMA df[f'{colprefix}momentum_kama'] = KAMAIndicator(close=df[close], n=10, pow1=2, pow2=30, fillna=fillna).kama() # Rate Of Change df[f'{colprefix}momentum_roc'] = ROCIndicator(close=df[close], n=12, fillna=fillna).roc() return df
def setUp(self): self._df = pd.read_csv(self._filename, sep=',') self._indicator = KAMAIndicator(close=self._df['Close'], n=10, pow1=2, pow2=30, fillna=False)