Exemple #1
0
 def setUpClass(cls):
     cls._df = pd.read_csv(cls._filename, sep=',')
     cls._params = dict(close=cls._df['Close'],
                        n=10,
                        pow1=2,
                        pow2=30,
                        fillna=False)
     cls._indicator = KAMAIndicator(**cls._params)
Exemple #2
0
 def setUpClass(cls):
     cls._df = pd.read_csv(cls._filename, sep=",")
     cls._params = dict(close=cls._df["Close"],
                        window=10,
                        pow1=2,
                        pow2=30,
                        fillna=False)
     cls._indicator = KAMAIndicator(**cls._params)
Exemple #3
0
class TestKAMAIndicator(unittest.TestCase):
    """
    https://school.stockcharts.com/doku.php?id=technical_indicators:kaufman_s_adaptive_moving_average
    """

    _filename = 'ta/tests/data/cs-kama.csv'

    def setUp(self):
        self._df = pd.read_csv(self._filename, sep=',')
        self._indicator = KAMAIndicator(close=self._df['Close'], n=10, pow1=2, pow2=30, fillna=False)

    def tearDown(self):
        del(self._df)

    def test_kama(self):
        target = 'KAMA'
        result = self._indicator.kama()
        pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
Exemple #4
0
from ta.volume import OnBalanceVolumeIndicator, AccDistIndexIndicator
from google.cloud import storage
import shutil

if len(sys.argv) > 1:

    batch_size = 31
    symbol = sys.argv[1]

    end = datetime.today()
    start = datetime(2000, 9, 1)
    ETH = pdr.DataReader(symbol,'yahoo',start,end)

    df = pd.DataFrame(data=ETH)

    kama_indicator = KAMAIndicator(close = df["Close"], window = 10, pow1 = 2, pow2 = 30, fillna = False)
    df['kama'] = kama_indicator.kama()

    ppo_indicator = PercentagePriceOscillator(close = df["Close"], window_slow = 20, window_fast = 10, window_sign = 9, fillna = False)
    df['ppo'] = ppo_indicator.ppo()

    roc_indicator = ROCIndicator(close = df["Close"], window = 12, fillna = False)
    df['roc'] = roc_indicator.roc()

    macd_indicator = MACD(close = df["Close"], window_slow = 20, window_fast = 12, window_sign = 9, fillna = False)
    df['macd'] = macd_indicator.macd()

    rsi_indicator = RSIIndicator(close = df["Close"], window = 14, fillna = False)
    df['rsi'] = rsi_indicator.rsi()

    aroon_indicator = AroonIndicator(close = df["Close"], window = 20, fillna = False)
Exemple #5
0
def add_momentum_ta(
    df: pd.DataFrame,
    high: str,
    low: str,
    close: str,
    volume: str,
    fillna: bool = False,
    colprefix: str = "",
    vectorized: bool = False,
) -> pd.DataFrame:
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        volume (str): Name of 'volume' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted
        vectorized(bool): if True, use only vectorized functions indicators

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # Relative Strength Index (RSI)
    df[f"{colprefix}momentum_rsi"] = RSIIndicator(close=df[close],
                                                  window=14,
                                                  fillna=fillna).rsi()

    # Stoch RSI (StochRSI)
    indicator_srsi = StochRSIIndicator(close=df[close],
                                       window=14,
                                       smooth1=3,
                                       smooth2=3,
                                       fillna=fillna)
    df[f"{colprefix}momentum_stoch_rsi"] = indicator_srsi.stochrsi()
    df[f"{colprefix}momentum_stoch_rsi_k"] = indicator_srsi.stochrsi_k()
    df[f"{colprefix}momentum_stoch_rsi_d"] = indicator_srsi.stochrsi_d()

    # TSI Indicator
    df[f"{colprefix}momentum_tsi"] = TSIIndicator(close=df[close],
                                                  window_slow=25,
                                                  window_fast=13,
                                                  fillna=fillna).tsi()

    # Ultimate Oscillator
    df[f"{colprefix}momentum_uo"] = UltimateOscillator(
        high=df[high],
        low=df[low],
        close=df[close],
        window1=7,
        window2=14,
        window3=28,
        weight1=4.0,
        weight2=2.0,
        weight3=1.0,
        fillna=fillna,
    ).ultimate_oscillator()

    # Stoch Indicator
    indicator_so = StochasticOscillator(
        high=df[high],
        low=df[low],
        close=df[close],
        window=14,
        smooth_window=3,
        fillna=fillna,
    )
    df[f"{colprefix}momentum_stoch"] = indicator_so.stoch()
    df[f"{colprefix}momentum_stoch_signal"] = indicator_so.stoch_signal()

    # Williams R Indicator
    df[f"{colprefix}momentum_wr"] = WilliamsRIndicator(
        high=df[high], low=df[low], close=df[close], lbp=14,
        fillna=fillna).williams_r()

    # Awesome Oscillator
    df[f"{colprefix}momentum_ao"] = AwesomeOscillatorIndicator(
        high=df[high], low=df[low], window1=5, window2=34,
        fillna=fillna).awesome_oscillator()

    # Rate Of Change
    df[f"{colprefix}momentum_roc"] = ROCIndicator(close=df[close],
                                                  window=12,
                                                  fillna=fillna).roc()

    # Percentage Price Oscillator
    indicator_ppo = PercentagePriceOscillator(close=df[close],
                                              window_slow=26,
                                              window_fast=12,
                                              window_sign=9,
                                              fillna=fillna)
    df[f"{colprefix}momentum_ppo"] = indicator_ppo.ppo()
    df[f"{colprefix}momentum_ppo_signal"] = indicator_ppo.ppo_signal()
    df[f"{colprefix}momentum_ppo_hist"] = indicator_ppo.ppo_hist()

    # Percentage Volume Oscillator
    indicator_pvo = PercentageVolumeOscillator(volume=df[volume],
                                               window_slow=26,
                                               window_fast=12,
                                               window_sign=9,
                                               fillna=fillna)
    df[f"{colprefix}momentum_pvo"] = indicator_pvo.pvo()
    df[f"{colprefix}momentum_pvo_signal"] = indicator_pvo.pvo_signal()
    df[f"{colprefix}momentum_pvo_hist"] = indicator_pvo.pvo_hist()

    if not vectorized:
        # KAMA
        df[f"{colprefix}momentum_kama"] = KAMAIndicator(close=df[close],
                                                        window=10,
                                                        pow1=2,
                                                        pow2=30,
                                                        fillna=fillna).kama()

    return df
Exemple #6
0
def add_momentum_ta(df: pd.DataFrame,
                    high: str,
                    low: str,
                    close: str,
                    volume: str,
                    fillna: bool = False,
                    colprefix: str = ""):
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # Relative Strength Index (RSI)
    df[f'{colprefix}momentum_rsi'] = RSIIndicator(close=df[close],
                                                  n=14,
                                                  fillna=fillna).rsi()

    # Money Flow Indicator
    df[f'{colprefix}momentum_mfi'] = MFIIndicator(
        high=df[high],
        low=df[low],
        close=df[close],
        volume=df[volume],
        n=14,
        fillna=fillna).money_flow_index()

    # TSI Indicator
    df[f'{colprefix}momentum_tsi'] = TSIIndicator(close=df[close],
                                                  r=25,
                                                  s=13,
                                                  fillna=fillna).tsi()

    # Ultimate Oscillator
    df[f'{colprefix}momentum_uo'] = UltimateOscillatorIndicator(
        high=df[high],
        low=df[low],
        close=df[close],
        s=7,
        m=14,
        len=28,
        ws=4.0,
        wm=2.0,
        wl=1.0,
        fillna=fillna).uo()

    # Stoch Indicator
    indicator = StochIndicator(high=df[high],
                               low=df[low],
                               close=df[close],
                               n=14,
                               d_n=3,
                               fillna=fillna)
    df[f'{colprefix}momentum_stoch'] = indicator.stoch()
    df[f'{colprefix}momentum_stoch_signal'] = indicator.stoch_signal()

    # Williams R Indicator
    df[f'{colprefix}momentum_wr'] = WilliamsRIndicator(high=df[high],
                                                       low=df[low],
                                                       close=df[close],
                                                       lbp=14,
                                                       fillna=fillna).wr()

    # Awesome Oscillator
    df[f'{colprefix}momentum_ao'] = AwesomeOscillatorIndicator(
        high=df[high], low=df[low], s=5, len=34, fillna=fillna).ao()

    # KAMA
    df[f'{colprefix}momentum_kama'] = KAMAIndicator(close=df[close],
                                                    n=10,
                                                    pow1=2,
                                                    pow2=30,
                                                    fillna=fillna).kama()

    # Rate Of Change
    df[f'{colprefix}momentum_roc'] = ROCIndicator(close=df[close],
                                                  n=12,
                                                  fillna=fillna).roc()
    return df
Exemple #7
0
 def setUp(self):
     self._df = pd.read_csv(self._filename, sep=',')
     self._indicator = KAMAIndicator(close=self._df['Close'], n=10, pow1=2, pow2=30, fillna=False)