def get_state(self, t): """ return the state (define state here) given time t """ # time feature d = t - self.window_size if d <= 0: state = np.zeros((5, 5)) else: feature1 = volume.acc_dist_index( high=self.OHLCV_df[d - 1:t]["High"], low=self.OHLCV_df[d - 1:t]["Low"], close=self.OHLCV_df[d - 1:t]["Adj Close"], volume=self.OHLCV_df[d - 1:t]['Volume']) feature2 = volatility.average_true_range( high=self.OHLCV_df[d - 1:t]["High"], low=self.OHLCV_df[d - 1:t]["Low"], close=self.OHLCV_df[d - 1:t]["Adj Close"]) feature3 = trend.macd(close=self.OHLCV_df[d - 1:t]["Adj Close"], n_slow=self.window_size, n_fast=self.window_size // 2, fillna=True) feature4 = momentum.rsi(close=self.OHLCV_df[d - 1:t]["Adj Close"]) feature5 = others.daily_return( close=self.OHLCV_df[d - 1:t]["Adj Close"]) state = pd.concat( [feature1, feature2, feature3, feature4, feature5], axis=1).values[-5:, :] # block = self.timeseries[d-1:t] # state = np.diff(np.log(block)) state = state.flatten() state = np.append(state, (self.inventory, self.cash)) return state
def get_technical_indicators(dataset, key='Close'): # Create 7 and 21 days Moving Average dataset['ma7'] = dataset[key].rolling(window=7).mean() dataset['ma21'] = dataset[key].rolling(window=21).mean() # Create MACD -> Moving Average Convergence/Divergence (trend and momentum indicator) dataset['26ema'] = dataset[key].ewm(span=26).mean() dataset['12ema'] = dataset[key].ewm(span=12).mean() dataset['MACD'] = (dataset['12ema'] - dataset['26ema']) # Create Bollinger Bands # Bollinger Bands are volatility bands placed above and below a moving average. Volatility is based on the standard deviation, which changes as volatility # increases and decreases. The bands automatically widen when volatility increases and narrow when volatility decreases. dataset['20std'] = dataset[key].rolling(20).std() dataset['upper_band'] = dataset['ma21'] + (dataset['20std'] * 2) dataset['lower_band'] = dataset['ma21'] - (dataset['20std'] * 2) # Create Exponential moving average dataset['ema'] = dataset[key].ewm(com=0.5).mean() # Create Momentum dataset['momentum_1'] = dataset[key].diff(1) dataset['momentum_10'] = dataset[key].diff(10) # close price raw return 1, 10 days horizon # dataset['returnsClosePrevRaw1'] = dataset['Close'].pct_change(1) # dataset['returnsClosePrevRaw10'] = dataset['Close'].pct_change(10) # open price raw return 1, 10 days horizon # dataset['returnsOpenPrevRaw1'] = dataset['Open'].pct_change(1) # dataset['returnsOpenPrevRaw10'] = dataset['Open'].pct_change(10) # Create AROON - identifing when trends are likely to change direction, n=20 dataset['aroon_up_20'] = dataset[key].rolling(20, min_periods=0).apply(lambda x: float(np.argmax(x) + 1) / 20 * 100, raw=True) dataset['aroon_down_20'] = dataset[key].rolling(20, min_periods=0).apply( lambda x: float(np.argmin(x) + 1) / 20 * 100, raw=True) # Create CCI, Commodity Channel Index pp = (dataset['High'] + dataset['Low'] + dataset[key]) / 3.0 dataset['cci'] = (pp - pp.rolling(20, min_periods=0).mean()) / (0.015 * pp.rolling(20, min_periods=0).std()) # Create STOCH - Stochastic Oscillator smin = dataset['Low'].rolling(14, min_periods=0).min() smax = dataset['High'].rolling(14, min_periods=0).max() dataset['stoch'] = 100 * (dataset[key] - smin) / (smax - smin) # Create RSI - Relative Strength Index dataset['rsi'] = rsi(dataset[key]) # Create ADI - Accumulation/Distribution Index dataset['adi'] = acc_dist_index(dataset['High'], dataset['Low'], dataset[key], dataset['Volume']) # Create OBV - On-balance volume dataset['obv'] = on_balance_volume(dataset[key], dataset['Volume']) return dataset
def test_adl(self): target = 'ADLine' result = acc_dist_index(high=self._df['High'], low=self._df['Low'], close=self._df['Close'], volume=self._df['Volume'], fillna=False) pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
def engineer_data_over_single_interval(df: pd.DataFrame, indicators: list, ticker: str = "", rsi_n: int = 14, cmo_n: int = 7, macd_fast: int = 12, macd_slow: int = 26, macd_sign: int = 9, roc_n: int = 12, cci_n: int = 20, dpo_n: int = 20, cmf_n: int = 20, adx_n: int = 14, mass_index_low: int = 9, mass_index_high: int = 25, trix_n: int = 15, stochastic_oscillator_n: int = 14, stochastic_oscillator_sma_n: int = 3, ultimate_oscillator_short_n: int = 7, ultimate_oscillator_medium_n: int = 14, ultimate_oscillator_long_n: int = 28, ao_short_n: int = 5, ao_long_n: int = 34, kama_n: int = 10, tsi_high_n: int = 25, tsi_low_n: int = 13, eom_n: int = 14, force_index_n: int = 13, ichimoku_low_n: int = 9, ichimoku_medium_n: int = 26): from ta.momentum import rsi, wr, roc, ao, stoch, uo, kama, tsi from ta.trend import macd, macd_signal, cci, dpo, adx, mass_index, trix, ichimoku_a from ta.volume import chaikin_money_flow, acc_dist_index, ease_of_movement, force_index # Momentum Indicators if Indicators.RELATIVE_STOCK_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.RELATIVE_STOCK_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.RELATIVE_STOCK_INDEX.value] = rsi(close=df['close'], n=rsi_n) if Indicators.WILLIAMS_PERCENT_RANGE in indicators: Logger.console_log(message="Calculating " + Indicators.WILLIAMS_PERCENT_RANGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.WILLIAMS_PERCENT_RANGE.value] = wr( df['high'], df['low'], df['close']) if Indicators.CHANDE_MOMENTUM_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.CHANDE_MOMENTUM_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.CHANDE_MOMENTUM_OSCILLATOR. value] = chande_momentum_oscillator(close_data=df['close'], period=cmo_n) if Indicators.RATE_OF_CHANGE in indicators: Logger.console_log(message="Calculating " + Indicators.RATE_OF_CHANGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.RATE_OF_CHANGE.value] = roc(close=df['close'], n=roc_n) if Indicators.STOCHASTIC_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.STOCHASTIC_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.STOCHASTIC_OSCILLATOR.value] = stoch( high=df['high'], low=df['low'], close=df['close'], n=stochastic_oscillator_n, d_n=stochastic_oscillator_sma_n) if Indicators.ULTIMATE_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.ULTIMATE_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ULTIMATE_OSCILLATOR.value] = uo( high=df['high'], low=df['low'], close=df['close'], s=ultimate_oscillator_short_n, m=ultimate_oscillator_medium_n, len=ultimate_oscillator_long_n) if Indicators.AWESOME_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.AWESOME_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.AWESOME_OSCILLATOR.value] = ao(high=df['high'], low=df['low'], s=ao_short_n, len=ao_long_n) if Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE in indicators: Logger.console_log(message="Calculating " + Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value] = kama( close=df['close'], n=kama_n) if Indicators.TRUE_STRENGTH_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.TRUE_STRENGTH_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.TRUE_STRENGTH_INDEX.value] = tsi(close=df['close'], r=tsi_high_n, s=tsi_low_n) # Trend Indicator if Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE in indicators: Logger.console_log( message="Calculating " + Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value] = macd(close=df['close'], n_slow=macd_slow, n_fast=macd_fast) - \ macd_signal(close=df['close'], n_slow=macd_slow, n_fast=macd_fast, n_sign=macd_sign) if Indicators.COMMODITY_CHANNEL_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.COMMODITY_CHANNEL_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.COMMODITY_CHANNEL_INDEX.value] = cci(high=df['high'], low=df['low'], close=df['close'], n=cci_n) if Indicators.DETRENDED_PRICE_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.DETRENDED_PRICE_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.DETRENDED_PRICE_OSCILLATOR.value] = dpo( close=df['close'], n=dpo_n) if Indicators.AVERAGE_DIRECTIONAL_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.AVERAGE_DIRECTIONAL_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.AVERAGE_DIRECTIONAL_INDEX.value] = adx(high=df['high'], low=df['low'], close=df['close'], n=adx_n) if Indicators.MASS_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.MASS_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.MASS_INDEX.value] = mass_index(high=df['high'], low=df['low'], n=mass_index_low, n2=mass_index_high) if Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE in indicators: Logger.console_log( message="Calculating " + Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE. value] = trix(close=df['close'], n=trix_n) if Indicators.ICHIMOKU_A in indicators: Logger.console_log(message="Calculating " + Indicators.ICHIMOKU_A.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ICHIMOKU_A.value] = ichimoku_a(high=df['high'], low=df['low'], n1=ichimoku_low_n, n2=ichimoku_medium_n) # Volume Indicator if Indicators.CHAIKIN_MONEY_FLOW in indicators: Logger.console_log(message="Calculating " + Indicators.CHAIKIN_MONEY_FLOW.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.CHAIKIN_MONEY_FLOW.value] = chaikin_money_flow( high=df['high'], low=df['low'], close=df['close'], volume=df['volume'], n=cmf_n) if Indicators.ACCUMULATION_DISTRIBUTION_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value] = acc_dist_index( high=df['high'], low=df['low'], close=df['close'], volume=df['volume']) if Indicators.EASE_OF_MOVEMENT in indicators: Logger.console_log(message="Calculating " + Indicators.EASE_OF_MOVEMENT.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.EASE_OF_MOVEMENT.value] = ease_of_movement( high=df['high'], low=df['low'], volume=df['volume'], n=eom_n) if Indicators.FORCE_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.FORCE_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.FORCE_INDEX.value] = force_index(close=df['close'], volume=df['volume'], n=force_index_n)
def __dataframe(self): """Create an comprehensive list of from data. Args: None Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._ohlcv) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. result = pd.DataFrame() # Add current value columns result['open'] = self._ohlcv['open'] result['high'] = self._ohlcv['high'] result['low'] = self._ohlcv['low'] result['close'] = self._ohlcv['close'] result['volume'] = self._ohlcv['volume'] # Add columns of differences result['num_diff_open'] = num_difference['open'] result['num_diff_high'] = num_difference['high'] result['num_diff_low'] = num_difference['low'] result['num_diff_close'] = num_difference['close'] result['pct_diff_open'] = pct_difference['open'] result['pct_diff_high'] = pct_difference['high'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_close'] = pct_difference['close'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns # result['day'] = self._dates.day result['weekday'] = self._dates.weekday # result['week'] = self._dates.week result['month'] = self._dates.month result['quarter'] = self._dates.quarter # result['dayofyear'] = self._dates.dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result[ 'ma_volume_delta'] = result['ma_volume_long'] - result['ma_volume'] # Standard deviation related result['ma_std_close'] = result['close'].rolling( self._globals['ma_window']).std() result['std_pct_diff_close'] = result['pct_diff_close'].rolling( self._globals['ma_window']).std() result['bollinger_lband'] = volatility.bollinger_lband(result['close']) result['bollinger_hband'] = volatility.bollinger_lband(result['close']) result[ 'bollinger_lband_indicator'] = volatility.bollinger_lband_indicator( result['close']) result[ 'bollinger_hband_indicator'] = volatility.bollinger_hband_indicator( result['close']) # Rolling ranges result['amplitude'] = result['high'] - result['low'] _min = result['low'].rolling(self._globals['week']).min() _max = result['high'].rolling(self._globals['week']).max() result['amplitude_medium'] = abs(_min - _max) _min = result['low'].rolling(2 * self._globals['week']).min() _max = result['high'].rolling(2 * self._globals['week']).max() result['amplitude_long'] = abs(_min - _max) _min = result['volume'].rolling(self._globals['week']).min() _max = result['volume'].rolling(self._globals['week']).max() result['vol_amplitude'] = abs(_min - _max) _min = result['volume'].rolling(2 * self._globals['week']).min() _max = result['volume'].rolling(2 * self._globals['week']).max() result['vol_amplitude_long'] = abs(_min - _max) # Volume metrics result['force_index'] = volume.force_index(result['close'], result['volume']) result['negative_volume_index'] = volume.negative_volume_index( result['close'], result['volume']) result['ease_of_movement'] = volume.ease_of_movement( result['high'], result['low'], result['close'], result['volume']) result['acc_dist_index'] = volume.acc_dist_index( result['high'], result['low'], result['close'], result['volume']) result['on_balance_volume'] = volume.on_balance_volume( result['close'], result['volume']) result['on_balance_volume_mean'] = volume.on_balance_volume( result['close'], result['volume']) result['volume_price_trend'] = volume.volume_price_trend( result['close'], result['volume']) # Calculate the Stochastic values result['k'] = momentum.stoch(result['high'], result['low'], result['close'], n=self._globals['kwindow']) result['d'] = momentum.stoch_signal(result['high'], result['low'], result['close'], n=self._globals['kwindow'], d_n=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi(result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._ohlcv) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx(result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * self._buy _decreasing = (_result < 0).astype(int) * self._sell result['increasing'] = _increasing + _decreasing # Stochastic subtraciton result['k_d'] = pd.Series(result['k'].values - result['d'].values) # Other indicators result['k_i'] = self._stochastic_indicator(result['k'], result['high'], result['low'], result['ma_close']) result['d_i'] = self._stochastic_indicator(result['d'], result['high'], result['low'], result['ma_close']) result['stoch_i'] = self._stochastic_indicator_2( result['k'], result['d'], result['high'], result['low'], result['ma_close']) result['rsi_i'] = self._rsi_indicator(result['rsi'], result['high'], result['low'], result['ma_close']) result['adx_i'] = self._adx_indicator(result['adx']) result['macd_diff_i'] = self._macd_diff_indicator(result['macd_diff']) result['volume_i'] = self._volume_indicator(result['ma_volume'], result['ma_volume_long']) # Create time shifted columns for step in range(1, self._ignore_row_count + 1): # result['t-{}'.format(step)] = result['close'].shift(step) result['tpd-{}'.format(step)] = result['close'].pct_change( periods=step) # result['tad-{}'.format(step)] = result[ # 'close'].diff(periods=step) # Mask increasing with result['increasing_masked'] = _mask(result['increasing'].to_frame(), result['stoch_i'], as_integer=True).values # Get class values for each vector classes = pd.DataFrame(columns=self._shift_steps) for step in self._shift_steps: # Shift each column by the value of its label classes[step] = result[self._label2predict].shift(-step) # Remove all undesirable columns from the dataframe undesired_columns = ['open', 'close', 'high', 'low', 'volume'] for column in undesired_columns: result = result.drop(column, axis=1) # Delete the firsts row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations result = result.iloc[self._ignore_row_count:] classes = classes.iloc[self._ignore_row_count:] # Convert result to float32 to conserve memory result = result.astype(np.float32) # Return return result, classes
def test_adl(self): target = "ADLine" result = acc_dist_index(**self._params) pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
def __dataframe(self): """Create an comprehensive list of from data. Args: None Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._ohlcv) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. result = pd.DataFrame() # Add current value columns # NOTE Close must be first for correct correlation column dropping result['close'] = self._ohlcv['close'] result['open'] = self._ohlcv['open'] result['high'] = self._ohlcv['high'] result['low'] = self._ohlcv['low'] result['volume'] = self._ohlcv['volume'] # Add columns of differences # NOTE Close must be first for correct correlation column dropping result['num_diff_close'] = num_difference['close'] result['pct_diff_close'] = pct_difference['close'] result['num_diff_open'] = num_difference['open'] result['pct_diff_open'] = pct_difference['open'] result['num_diff_high'] = num_difference['high'] result['pct_diff_high'] = pct_difference['high'] result['num_diff_low'] = num_difference['low'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns # result['day'] = self._dates.day result['weekday'] = self._dates.weekday # result['week'] = self._dates.week result['month'] = self._dates.month result['quarter'] = self._dates.quarter # result['dayofyear'] = self._dates.dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result['ma_volume_delta'] = result[ 'ma_volume_long'] - result['ma_volume'] # Standard deviation related result['ma_std_close'] = result['close'].rolling( self._globals['ma_window']).std() result['std_pct_diff_close'] = result['pct_diff_close'].rolling( self._globals['ma_window']).std() result['bollinger_lband'] = volatility.bollinger_lband(result['close']) result['bollinger_hband'] = volatility.bollinger_lband(result['close']) result['bollinger_lband_indicator'] = volatility.bollinger_lband_indicator(result['close']) result['bollinger_hband_indicator'] = volatility.bollinger_hband_indicator(result['close']) # Rolling ranges result['amplitude'] = result['high'] - result['low'] _min = result['low'].rolling( self._globals['week']).min() _max = result['high'].rolling( self._globals['week']).max() result['amplitude_medium'] = abs(_min - _max) _min = result['low'].rolling( 2 * self._globals['week']).min() _max = result['high'].rolling( 2 * self._globals['week']).max() result['amplitude_long'] = abs(_min - _max) _min = result['volume'].rolling( self._globals['week']).min() _max = result['volume'].rolling( self._globals['week']).max() result['vol_amplitude'] = abs(_min - _max) _min = result['volume'].rolling( 2 * self._globals['week']).min() _max = result['volume'].rolling( 2 * self._globals['week']).max() result['vol_amplitude_long'] = abs(_min - _max) # Volume metrics result['force_index'] = volume.force_index( result['close'], result['volume']) result['negative_volume_index'] = volume.negative_volume_index( result['close'], result['volume']) result['ease_of_movement'] = volume.ease_of_movement( result['high'], result['low'], result['close'], result['volume']) result['acc_dist_index'] = volume.acc_dist_index( result['high'], result['low'], result['close'], result['volume']) result['on_balance_volume'] = volume.on_balance_volume( result['close'], result['volume']) result['on_balance_volume_mean'] = volume.on_balance_volume( result['close'], result['volume']) result['volume_price_trend'] = volume.volume_price_trend( result['close'], result['volume']) # Calculate the Stochastic values result['k'] = momentum.stoch( result['high'], result['low'], result['close'], n=self._globals['kwindow']) result['d'] = momentum.stoch_signal( result['high'], result['low'], result['close'], n=self._globals['kwindow'], d_n=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi( result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._ohlcv) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx( result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * self._buy _decreasing = (_result < 0).astype(int) * self._sell result['increasing'] = _increasing + _decreasing # Stochastic subtraciton result['k_d'] = pd.Series(result['k'].values - result['d'].values) # Other indicators result['k_i'] = self._stochastic_indicator( result['k'], result['high'], result['low'], result['ma_close']) result['d_i'] = self._stochastic_indicator( result['d'], result['high'], result['low'], result['ma_close']) result['stoch_i'] = self._stochastic_indicator_2( result['k'], result['d'], result['high'], result['low'], result['ma_close']) result['rsi_i'] = self._rsi_indicator( result['rsi'], result['high'], result['low'], result['ma_close']) result['adx_i'] = self._adx_indicator(result['adx']) result['macd_diff_i'] = self._macd_diff_indicator(result['macd_diff']) result['volume_i'] = self._volume_indicator( result['ma_volume'], result['ma_volume_long']) # Create time shifted columns for step in range(1, self._ignore_row_count + 1): result['t-{}'.format(step)] = result['close'].shift(step) result['tpd-{}'.format(step)] = result[ 'close'].pct_change(periods=step) result['tad-{}'.format(step)] = result[ 'close'].diff(periods=step) # Mask increasing with result['increasing_masked'] = _mask( result['increasing'].to_frame(), result['stoch_i'], as_integer=True).values # Get class values for each vector classes = pd.DataFrame(columns=self._shift_steps) for step in self._shift_steps: # Shift each column by the value of its label if self._binary is True: # Classes need to be 0 or 1 (One hot encoding) classes[step] = ( result[self._label2predict].shift(-step) > 0).astype(int) else: classes[step] = result[self._label2predict].shift(-step) # classes[step] = result[self._label2predict].shift(-step) # Delete the firsts row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations ignore = max(max(self._shift_steps), self._ignore_row_count) result = result.iloc[ignore:] classes = classes.iloc[ignore:] # Convert result to float32 to conserve memory result = result.astype(np.float32) # Return return result, classes