def test_adl2(self): target = 'ADLine' result = AccDistIndexIndicator(high=self._df['High'], low=self._df['Low'], close=self._df['Close'], volume=self._df['Volume'], fillna=False).acc_dist_index() pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
def ta_acc_distr_index(df): """ Accumulation Distribution Index :param df: pandas dataframe :return: pandas dataframe """ temp_df = df.copy() temp = AccDistIndexIndicator(temp_df["High"], temp_df["Low"], temp_df["Close"], temp_df["Volume"], fillna=False) temp_df["adi"] = temp.acc_dist_index() return temp_df
def get_indicators(df): """ Add set of technical indicators to the dataframe, return original data frame with new features """ feature_df = df.copy() feature_df['RSI'] = RSIIndicator(close=df[CLOSE]).rsi() feature_df['Stochastic'] = StochasticOscillator(high=df[HIGH], low=df[LOW], close=df[CLOSE]).stoch() feature_df['Stochastic_signal'] = StochasticOscillator( high=df[HIGH], low=df[LOW], close=df[CLOSE]).stoch_signal() feature_df['ADI'] = AccDistIndexIndicator( high=df[HIGH], low=df[LOW], close=df[CLOSE], volume=df[VOLUME]).acc_dist_index() feature_df['OBV'] = OnBalanceVolumeIndicator( close=df[CLOSE], volume=df[VOLUME]).on_balance_volume() feature_df['ATR'] = AverageTrueRange(high=df[HIGH], low=df[LOW], close=df[CLOSE]).average_true_range() feature_df['ADX'] = ADXIndicator(high=df[HIGH], low=df[LOW], close=df[CLOSE]).adx() feature_df['ADX_pos'] = ADXIndicator(high=df[HIGH], low=df[LOW], close=df[CLOSE]).adx_pos() feature_df['ADX_neg'] = ADXIndicator(high=df[HIGH], low=df[LOW], close=df[CLOSE]).adx_neg() feature_df['MACD'] = MACD(close=df[CLOSE]).macd() feature_df['MACD_diff'] = MACD(close=df[CLOSE]).macd_diff() feature_df['MACD_signal'] = MACD(close=df[CLOSE]).macd_signal() return feature_df
def setUpClass(cls): cls._df = pd.read_csv(cls._filename, sep=',') cls._params = dict(high=cls._df['High'], low=cls._df['Low'], close=cls._df['Close'], volume=cls._df['Volume'], fillna=False) cls._indicator = AccDistIndexIndicator(**cls._params)
def add_volume_ta(df: pd.DataFrame, high: str, low: str, close: str, volume: str, fillna: bool = False, colprefix: str = "") -> pd.DataFrame: """Add volume technical analysis features to dataframe. Args: df (pandas.core.frame.DataFrame): Dataframe base. high (str): Name of 'high' column. low (str): Name of 'low' column. close (str): Name of 'close' column. volume (str): Name of 'volume' column. fillna(bool): if True, fill nan values. colprefix(str): Prefix column names inserted Returns: pandas.core.frame.DataFrame: Dataframe with new features. """ # Accumulation Distribution Index df[f'{colprefix}volume_adi'] = AccDistIndexIndicator( high=df[high], low=df[low], close=df[close], volume=df[volume], fillna=fillna).acc_dist_index() # On Balance Volume df[f'{colprefix}volume_obv'] = OnBalanceVolumeIndicator( close=df[close], volume=df[volume], fillna=fillna).on_balance_volume() # Chaikin Money Flow df[f'{colprefix}volume_cmf'] = ChaikinMoneyFlowIndicator( high=df[high], low=df[low], close=df[close], volume=df[volume], fillna=fillna).chaikin_money_flow() # Force Index df[f'{colprefix}volume_fi'] = ForceIndexIndicator( close=df[close], volume=df[volume], n=13, fillna=fillna).force_index() # Money Flow Indicator df[f'{colprefix}volume_mfi'] = MFIIndicator( high=df[high], low=df[low], close=df[close], volume=df[volume], n=14, fillna=fillna).money_flow_index() # Ease of Movement indicator = EaseOfMovementIndicator(high=df[high], low=df[low], volume=df[volume], n=14, fillna=fillna) df[f'{colprefix}volume_em'] = indicator.ease_of_movement() df[f'{colprefix}volume_sma_em'] = indicator.sma_ease_of_movement() # Volume Price Trend df[f'{colprefix}volume_vpt'] = VolumePriceTrendIndicator( close=df[close], volume=df[volume], fillna=fillna).volume_price_trend() # Negative Volume Index df[f'{colprefix}volume_nvi'] = NegativeVolumeIndexIndicator( close=df[close], volume=df[volume], fillna=fillna).negative_volume_index() # Volume Weighted Average Price df[f'{colprefix}volume_vwap'] = VolumeWeightedAveragePrice( high=df[high], low=df[low], close=df[close], volume=df[volume], n=14, fillna=fillna ).volume_weighted_average_price() return df
def setUpClass(cls): cls._df = pd.read_csv(cls._filename, sep=",") cls._params = dict( high=cls._df["High"], low=cls._df["Low"], close=cls._df["Close"], volume=cls._df["Volume"], fillna=False, ) cls._indicator = AccDistIndexIndicator(**cls._params)
def handle(self, *args, **options): # import pdb # pdb.set_trace() if not options['update']: NSETechnical.objects.all().delete() symbols = Symbol.objects.all() for symbol in symbols: nse_history_data = NSEHistoricalData.objects.filter( symbol__symbol_name=symbol).order_by('timestamp') if not nse_history_data: continue nse_technical = pd.DataFrame( list( nse_history_data.values('timestamp', 'open', 'high', 'low', 'close', 'total_traded_quantity'))) ''' Moving average convergence divergence ''' indicator_macd = MACD(close=nse_technical['close'], window_slow=26, window_fast=12, window_sign=9, fillna=False) nse_technical["trend_macd"] = indicator_macd.macd() nse_technical["trend_macd_signal"] = indicator_macd.macd_signal() nse_technical["trend_macd_diff"] = indicator_macd.macd_diff() ''' Simple Moving Average ''' nse_technical["trend_sma_fast"] = SMAIndicator( close=nse_technical['close'], window=12, fillna=False).sma_indicator() nse_technical["trend_sma_slow"] = SMAIndicator( close=nse_technical['close'], window=26, fillna=False).sma_indicator() ''' Exponential Moving Average ''' nse_technical["trend_ema_fast"] = EMAIndicator( close=nse_technical['close'], window=12, fillna=False).ema_indicator() nse_technical["trend_ema_slow"] = EMAIndicator( close=nse_technical['close'], window=26, fillna=False).ema_indicator() ''' Ichimoku Indicator ''' indicator_ichi = IchimokuIndicator( high=nse_technical['high'], low=nse_technical['low'], window1=9, window2=26, window3=52, visual=False, fillna=False, ) nse_technical[ "trend_ichimoku_conv"] = indicator_ichi.ichimoku_conversion_line( ) nse_technical[ "trend_ichimoku_base"] = indicator_ichi.ichimoku_base_line() nse_technical["trend_ichimoku_a"] = indicator_ichi.ichimoku_a() nse_technical["trend_ichimoku_b"] = indicator_ichi.ichimoku_b() indicator_ichi_visual = IchimokuIndicator( high=nse_technical['high'], low=nse_technical['low'], window1=9, window2=26, window3=52, visual=True, fillna=False, ) nse_technical[ "trend_visual_ichimoku_a"] = indicator_ichi_visual.ichimoku_a( ) nse_technical[ "trend_visual_ichimoku_b"] = indicator_ichi_visual.ichimoku_b( ) ''' Bollinger Band ''' indicator_bb = BollingerBands(close=nse_technical['close'], window=20, window_dev=2, fillna=False) nse_technical["volatility_bbm"] = indicator_bb.bollinger_mavg() nse_technical["volatility_bbh"] = indicator_bb.bollinger_hband() nse_technical["volatility_bbl"] = indicator_bb.bollinger_lband() nse_technical["volatility_bbw"] = indicator_bb.bollinger_wband() nse_technical["volatility_bbp"] = indicator_bb.bollinger_pband() nse_technical[ "volatility_bbhi"] = indicator_bb.bollinger_hband_indicator() nse_technical[ "volatility_bbli"] = indicator_bb.bollinger_lband_indicator() ''' Accumulation Distribution Index ''' nse_technical["volume_adi"] = AccDistIndexIndicator( high=nse_technical['high'], low=nse_technical['low'], close=nse_technical['close'], volume=nse_technical['total_traded_quantity'], fillna=False).acc_dist_index() ''' Money Flow Index ''' nse_technical["volume_mfi"] = MFIIndicator( high=nse_technical['high'], low=nse_technical['low'], close=nse_technical['close'], volume=nse_technical['total_traded_quantity'], window=14, fillna=False, ).money_flow_index() ''' Relative Strength Index (RSI) ''' nse_technical["momentum_rsi"] = RSIIndicator( close=nse_technical['close'], window=14, fillna=False).rsi() ''' Stoch RSI (StochRSI) ''' indicator_srsi = StochRSIIndicator(close=nse_technical['close'], window=14, smooth1=3, smooth2=3, fillna=False) nse_technical["momentum_stoch_rsi"] = indicator_srsi.stochrsi() nse_technical["momentum_stoch_rsi_k"] = indicator_srsi.stochrsi_k() nse_technical["momentum_stoch_rsi_d"] = indicator_srsi.stochrsi_d() nse_technical.replace({np.nan: None}, inplace=True) nse_technical.replace([np.inf, -np.inf], None, inplace=True) list_to_create = [] list_to_update = [] for index in range(len(nse_history_data) - 1, -1, -1): data = nse_history_data[index] if data.technicals: break technical = NSETechnical( nse_historical_data=data, trend_macd=nse_technical['trend_macd'][index], trend_macd_signal=nse_technical['trend_macd_signal'] [index], trend_macd_diff=nse_technical['trend_macd_diff'][index], trend_sma_fast=nse_technical['trend_sma_fast'][index], trend_sma_slow=nse_technical['trend_sma_slow'][index], trend_ema_fast=nse_technical['trend_ema_fast'][index], trend_ema_slow=nse_technical['trend_ema_slow'][index], trend_ichimoku_conv=nse_technical['trend_ichimoku_conv'] [index], trend_ichimoku_base=nse_technical['trend_ichimoku_base'] [index], trend_ichimoku_a=nse_technical['trend_ichimoku_a'][index], trend_ichimoku_b=nse_technical['trend_ichimoku_b'][index], trend_visual_ichimoku_a=nse_technical[ 'trend_visual_ichimoku_a'][index], trend_visual_ichimoku_b=nse_technical[ 'trend_visual_ichimoku_b'][index], volatility_bbm=nse_technical['volatility_bbm'][index], volatility_bbh=nse_technical['volatility_bbh'][index], volatility_bbl=nse_technical['volatility_bbl'][index], volatility_bbw=nse_technical['volatility_bbw'][index], volatility_bbp=nse_technical['volatility_bbp'][index], volatility_bbhi=nse_technical['volatility_bbhi'][index], volatility_bbli=nse_technical['volatility_bbli'][index], volume_adi=nse_technical['volume_adi'][index], volume_mfi=nse_technical['volume_mfi'][index], momentum_rsi=nse_technical['momentum_rsi'][index], momentum_stoch_rsi=nse_technical['momentum_stoch_rsi'] [index], momentum_stoch_rsi_k=nse_technical['momentum_stoch_rsi_k'] [index], momentum_stoch_rsi_d=nse_technical['momentum_stoch_rsi_d'] [index]) data.technicals = True list_to_update.append(data) list_to_create.append(technical) NSETechnical.objects.bulk_create(list_to_create) NSEHistoricalData.objects.bulk_update(list_to_update, ['technicals']) print(f"Technicals updated for {symbol}")