Exemple #1
0
def test_GQ_to_GP_expansion():  # noqa
    for mu in Partition.all(25, strict=True):
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=True))
        print()
        n = len(mu)
        q = GQ(n, mu)
        expansion = SymmetricPolynomial.GP_expansion(q)
        normalized = Vector({
            tuple(nu[i] - mu[i] for i in range(len(mu))): c * sgn(mu, nu) *
            BETA**(sum(nu) - sum(mu)) / 2**(len(mu) - sum(nu) + sum(mu))
            for nu, c in expansion.items()
        })
        unsigned = all(c > 0 for c in normalized.values())
        print('  mu =', mu, 'n =', n)
        print('  expansion =', expansion)
        print('  normalized expansion =', normalized)
        assert all(len(nu) == 0 or max(nu) <= 1 for nu in normalized)
        assert all(len(nu) == len(mu) for nu in expansion)
        assert all(Partition.contains(nu, mu) for nu in expansion)
        assert all(c % 2**(len(mu) - sum(nu) + sum(mu)) == 0
                   for nu, c in expansion.items())
        assert unsigned
        expected = {
            tuple(mu[i] + a[i] for i in range(len(a)))
            for a in zero_one_tuples(len(mu)) if all(
                mu[i - 1] + a[i - 1] > mu[i] + a[i] for i in range(1, len(a)))
        }
        print('  expected =', expected)
        assert set(expansion) == expected
        print()
        print()
Exemple #2
0
def test_gq_to_gp_expansion():  # noqa
    for mu in Partition.all(15, strict=True):
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=True))
        print()
        n = len(mu)
        q = gq(n, mu)
        expansion = SymmetricPolynomial.gp_expansion(q)
        print('  mu =', mu, 'n =', n)
        print('  expansion =', expansion)
        assert all(len(nu) == len(mu) for nu in expansion)
        assert all(Partition.contains(mu, nu) for nu in expansion)
        # assert all(c % 2**(len(mu) - sum(nu) + sum(mu)) == 0 for nu, c in expansion.items())
        expected = {}
        for a in zero_one_tuples(len(mu)):
            if not all(mu[i - 1] - a[i - 1] > mu[i] - a[i]
                       for i in range(1, len(a))):
                continue
            if not all(mu[i] - a[i] > 0 for i in range(len(a))):
                continue
            nu = Partition.trim(tuple(mu[i] - a[i] for i in range(len(a))))
            coeff = 2**(len(nu) - sum(a)) * sgn(nu, mu) * BETA**sum(a)
            assert coeff != 0
            expected[nu] = coeff
        print('  expected =', expected)
        assert expansion == Vector(expected)
        print()
        print()
Exemple #3
0
 def stable_grothendieck_doublebar(cls,
                                   num_variables,
                                   mu,
                                   nu=(),
                                   degree_bound=None):  # noqa
     ans = SymmetricPolynomial()
     if Partition.contains(mu, nu):
         for x in Partition.remove_inner_corners(nu):
             ans += BETA**(sum(nu) - sum(x)) * cls._stable_grothendieck(
                 num_variables, mu, x, degree_bound)
     return ans
def test_contains():
    mu = (1, )
    nu = ()
    assert Partition.contains(mu, mu)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (3, 2, 1)
    nu = (3, 2)
    assert Partition.contains(mu, mu)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (3, 2, 1)
    nu = (1, 1, 1)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (1, 1, 1, 1)
    nu = (1, 1, 1)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)
Exemple #5
0
def test_skew_GP_positivity():  # noqa
    k = 10
    for mu in Partition.all(k, strict=True):
        for nu in Partition.all(k, strict=True):
            if not Partition.contains(mu, nu):
                continue
            n = len(mu)
            f = GP(n, mu, nu)
            expansion = SymmetricPolynomial.GP_expansion(f)
            normalized = Vector({
                lam: c * BETA**(sum(lam) - sum(mu) + sum(nu))
                for lam, c in expansion.items()
            })
            print('GP_{%s/%s}(x_%s) =' % (mu, nu, n), normalized)
            print()
            assert all(c > 0 for c in normalized.values())
Exemple #6
0
def test_staircase_grothendieck_GP_positivity():  # noqa
    r = 6
    for k in range(r):
        delta = tuple(k - i for i in range(k))
        for nu in Partition.all(sum(delta)):
            if not Partition.contains(delta, nu):
                continue
            n = len(delta)
            f = G(n, delta, nu)
            expansion = SymmetricPolynomial.GP_expansion(f)
            normalized = Vector({
                lam: c * BETA**(sum(lam) - sum(delta) + sum(nu))
                for lam, c in expansion.items()
            })
            print('G_{%s/%s}(x_%s) =' % (delta, nu, n), normalized)
            print()
            assert all(c > 0 for c in normalized.values())
def test_strict_symmetric_functions():
    nn = 5
    for mu in Partition.all(nn, strict=True):
        for nu in Partition.all(nn, strict=True):
            for n in range(nn):
                print(n, mu, nu)
                print()

                # Schur-P and GP

                f = SymmetricPolynomial.schur_p(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck_p(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck_p(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur_p(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck_p(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck_p(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()

                if g != gs:
                    print(g)
                    print(gs)
                    print()

                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0

                # Schur-Q and GQ

                f = SymmetricPolynomial.schur_q(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck_q(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck_q(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur_q(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck_q(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck_q(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()

                if g != gs:
                    print(g)
                    print(gs)
                    print()

                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0
def test_symmetric_functions():
    nn = 6
    for mu in Partition.all(nn):
        for nu in Partition.all(nn, strict=True):
            for n in range(nn):
                print(n, mu, nu)
                print()

                f = SymmetricPolynomial.schur(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()
                if g != gs:
                    print(g)
                    print(gs)
                    print()
                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                hh = SymmetricPolynomial.schur_s(n, mu, nu)
                kk = SymmetricPolynomial.stable_grothendieck_s(n, mu, nu)

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1
                    assert hh == 1
                    assert kk == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0
                    assert hh == 0
                    assert kk == 0

                print(f)
                print(g)
                print()
                print(hh)
                print(kk)
                print()
                assert g.lowest_degree_terms() == f
                assert kk.lowest_degree_terms() == hh