prediction.extend( rapidminer_train(go_url, gouser, gopassword, input_train_data, label, cost_matrix, high_value, low_value, selection_criteria, max_min_crietria_selector, platform)) prediction.extend( rapidminer_score(go_url, gouser, gopassword, input_score_data, label, depID)) print('returning result') return prediction print('Deploying Quick Model') tabclient.deploy('Rapidminer_Quick_Training', rapidminer_quick_training, 'Quickly Trains a model for predictions', override=True) print('Deploying Training and Score') tabclient.deploy('RapidMiner_Train_And_Score', rapidminer_train_and_score, 'Trains and Returns a dataset with predictions', override=True) print('Deploying Score') tabclient.deploy('RapidMiner_Score', rapidminer_score, 'Returns a dataset with predictions', override=True) print('Deploying Training Function ')
for x in variables_categoricas: df[x] = df[x].astype(str) for x in variables_binarias: df[x] = df[x].fillna(0) df[x] = df[x].astype(np.int8) for x in variables_numericas: df[x] = df[x].apply(lambda c: getCleanPrice(c)) df[x] = df[x].astype(float) full_pipeline.transform(df) tree_predictions = tree_reg.predict(listing_prepared) tree_mse = mean_squared_error(listing_label, tree_predictions) tree_rmse = np.sqrt(tree_mse) tree_mae = mean_absolute_error(listing_label, tree_predictions) print("DecisionTreeRegressor:\nRMSE = ${:.4f}\nMAE = ${:.4f}".format( tree_rmse, tree_mae)) print("-" * 100) forest_predictions = forest_reg.predict(listing_prepared) forest_mse = mean_squared_error(listing_label, forest_predictions) forest_rmse = np.sqrt(forest_mse) forest_mae = mean_absolute_error(listing_label, forest_predictions) print("RandomForestRegressor:\nRMSE = ${:.4f}\nMAE = ${:.4f}".format( forest_rmse, forest_mae)) return [price for price in forest_predictions] cliente = Client("http://localhost:9004") cliente.deploy("hostPricePredictor", hostPricePredictor, "Calcula el precio del hosting segun los parametros recibidos", override=True)