def load(self,
             checkpoint_path,
             num_speakers=2,
             checkpoint_step=None,
             model_name='tacotron'):
        self.num_speakers = num_speakers

        if os.path.isdir(checkpoint_path):
            load_path = checkpoint_path
            checkpoint_path = get_most_recent_checkpoint(
                checkpoint_path, checkpoint_step)
        else:
            load_path = os.path.dirname(checkpoint_path)

        print('Constructing model: %s' % model_name)

        inputs = tf.placeholder(tf.int32, [None, None], 'inputs')
        input_lengths = tf.placeholder(tf.int32, [None], 'input_lengths')

        batch_size = tf.shape(inputs)[0]
        speaker_id = tf.placeholder_with_default(
            tf.zeros([batch_size], dtype=tf.int32), [None], 'speaker_id')

        load_hparams(hparams, load_path)
        with tf.variable_scope('model') as scope:
            self.model = create_model(hparams)

            self.model.initialize(inputs,
                                  input_lengths,
                                  self.num_speakers,
                                  speaker_id,
                                  rnn_decoder_test_mode=True)
            self.wav_output = inv_spectrogram_tensorflow(
                self.model.linear_outputs, hparams)

        print('Loading checkpoint: %s' % checkpoint_path)

        sess_config = tf.ConfigProto(allow_soft_placement=True,
                                     intra_op_parallelism_threads=1,
                                     inter_op_parallelism_threads=2)
        sess_config.gpu_options.allow_growth = True

        self.sess = tf.Session(config=sess_config)
        self.sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.restore(self.sess, checkpoint_path)
def train(log_dir, config):
    config.data_paths = config.data_paths  # ['datasets/moon']

    data_dirs = config.data_paths  # ['datasets/moon\\data']
    num_speakers = len(data_dirs)
    config.num_test = config.num_test_per_speaker * num_speakers  # 2*1

    if num_speakers > 1 and hparams.model_type not in ["deepvoice", "simple"]:
        raise Exception("[!] Unkown model_type for multi-speaker: {}".format(
            config.model_type))

    commit = get_git_commit() if config.git else 'None'
    checkpoint_path = os.path.join(
        log_dir, 'model.ckpt'
    )  # 'logdir-tacotron\\moon_2018-08-28_13-06-42\\model.ckpt'

    #log(' [*] git recv-parse HEAD:\n%s' % get_git_revision_hash())  # hccho: 주석 처리
    log('=' * 50)
    #log(' [*] dit diff:\n%s' % get_git_diff())
    log('=' * 50)
    log(' [*] Checkpoint path: %s' % checkpoint_path)
    log(' [*] Loading training data from: %s' % data_dirs)
    log(' [*] Using model: %s' %
        config.model_dir)  # 'logdir-tacotron\\moon_2018-08-28_13-06-42'
    log(hparams_debug_string())

    # Set up DataFeeder:
    coord = tf.train.Coordinator()
    with tf.variable_scope('datafeeder') as scope:
        # DataFeeder의 6개 placeholder: train_feeder.inputs, train_feeder.input_lengths, train_feeder.loss_coeff, train_feeder.mel_targets, train_feeder.linear_targets, train_feeder.speaker_id
        train_feeder = DataFeederTacotron(coord,
                                          data_dirs,
                                          hparams,
                                          config,
                                          32,
                                          data_type='train',
                                          batch_size=config.batch_size)
        test_feeder = DataFeederTacotron(coord,
                                         data_dirs,
                                         hparams,
                                         config,
                                         8,
                                         data_type='test',
                                         batch_size=config.num_test)

    # Set up model:
    is_randomly_initialized = config.initialize_path is None
    global_step = tf.Variable(0, name='global_step', trainable=False)

    with tf.variable_scope('model') as scope:
        model = create_model(hparams)
        model.initialize(train_feeder.inputs,
                         train_feeder.input_lengths,
                         num_speakers,
                         train_feeder.speaker_id,
                         train_feeder.mel_targets,
                         train_feeder.linear_targets,
                         train_feeder.loss_coeff,
                         is_randomly_initialized=is_randomly_initialized)

        model.add_loss()
        model.add_optimizer(global_step)
        train_stats = add_stats(model, scope_name='stats')  # legacy

    with tf.variable_scope('model', reuse=True) as scope:
        test_model = create_model(hparams)
        test_model.initialize(test_feeder.inputs,
                              test_feeder.input_lengths,
                              num_speakers,
                              test_feeder.speaker_id,
                              test_feeder.mel_targets,
                              test_feeder.linear_targets,
                              test_feeder.loss_coeff,
                              rnn_decoder_test_mode=True,
                              is_randomly_initialized=is_randomly_initialized)
        test_model.add_loss()

    test_stats = add_stats(test_model, model, scope_name='test')
    test_stats = tf.summary.merge([test_stats, train_stats])

    # Bookkeeping:
    step = 0
    time_window = ValueWindow(100)
    loss_window = ValueWindow(100)
    saver = tf.train.Saver(max_to_keep=None, keep_checkpoint_every_n_hours=2)

    sess_config = tf.ConfigProto(log_device_placement=False,
                                 allow_soft_placement=True)
    sess_config.gpu_options.allow_growth = True

    # Train!
    #with tf.Session(config=sess_config) as sess:
    with tf.Session() as sess:
        try:
            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
            sess.run(tf.global_variables_initializer())

            if config.load_path:
                # Restore from a checkpoint if the user requested it.
                restore_path = get_most_recent_checkpoint(config.model_dir)
                saver.restore(sess, restore_path)
                log('Resuming from checkpoint: %s at commit: %s' %
                    (restore_path, commit),
                    slack=True)
            elif config.initialize_path:
                restore_path = get_most_recent_checkpoint(
                    config.initialize_path)
                saver.restore(sess, restore_path)
                log('Initialized from checkpoint: %s at commit: %s' %
                    (restore_path, commit),
                    slack=True)

                zero_step_assign = tf.assign(global_step, 0)
                sess.run(zero_step_assign)

                start_step = sess.run(global_step)
                log('=' * 50)
                log(' [*] Global step is reset to {}'.format(start_step))
                log('=' * 50)
            else:
                log('Starting new training run at commit: %s' % commit,
                    slack=True)

            start_step = sess.run(global_step)

            train_feeder.start_in_session(sess, start_step)
            test_feeder.start_in_session(sess, start_step)

            while not coord.should_stop():
                start_time = time.time()
                step, loss, opt = sess.run(
                    [global_step, model.loss_without_coeff, model.optimize],
                    feed_dict=model.get_dummy_feed_dict())

                time_window.append(time.time() - start_time)
                loss_window.append(loss)

                message = 'Step %-7d [%.03f sec/step, loss=%.05f, avg_loss=%.05f]' % (
                    step, time_window.average, loss, loss_window.average)
                log(message, slack=(step % config.checkpoint_interval == 0))

                if loss > 100 or math.isnan(loss):
                    log('Loss exploded to %.05f at step %d!' % (loss, step),
                        slack=True)
                    raise Exception('Loss Exploded')

                if step % config.summary_interval == 0:
                    log('Writing summary at step: %d' % step)

                    feed_dict = {
                        **model.get_dummy_feed_dict(),
                        **test_model.get_dummy_feed_dict()
                    }
                    summary_writer.add_summary(
                        sess.run(test_stats, feed_dict=feed_dict), step)

                if step % config.checkpoint_interval == 0:
                    log('Saving checkpoint to: %s-%d' %
                        (checkpoint_path, step))
                    saver.save(sess, checkpoint_path, global_step=step)

                if step % config.test_interval == 0:
                    log('Saving audio and alignment...')
                    num_test = config.num_test

                    fetches = [
                        model.inputs[:num_test],
                        model.linear_outputs[:num_test],
                        model.alignments[:num_test],
                        test_model.inputs[:num_test],
                        test_model.linear_outputs[:num_test],
                        test_model.alignments[:num_test],
                    ]
                    feed_dict = {
                        **model.get_dummy_feed_dict(),
                        **test_model.get_dummy_feed_dict()
                    }

                    sequences, spectrograms, alignments, test_sequences, test_spectrograms, test_alignments = sess.run(
                        fetches, feed_dict=feed_dict)

                    #librosa는 ffmpeg가 있어야 한다.
                    save_and_plot(
                        sequences[:1], spectrograms[:1], alignments[:1],
                        log_dir, step, loss, "train"
                    )  # spectrograms: (num_test,200,1025), alignments: (num_test,encoder_length,decoder_length)
                    save_and_plot(test_sequences, test_spectrograms,
                                  test_alignments, log_dir, step, loss, "test")

        except Exception as e:
            log('Exiting due to exception: %s' % e, slack=True)
            traceback.print_exc()
            coord.request_stop(e)