def get_model(model_name, model_config, cpu_run,
              uniform_initialize_bn_weight=False, forward_is_infer=False):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        if forward_is_infer:
            class Tacotron2__forward_is_infer(Tacotron2):
                def forward(self, inputs, input_lengths):
                    return self.infer(inputs, input_lengths)
            model = Tacotron2__forward_is_infer(**model_config)
        else:
            model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        if forward_is_infer:
            class WaveGlow__forward_is_infer(WaveGlow):
                def forward(self, spect, sigma=1.0):
                    return self.infer(spect, sigma)
            model = WaveGlow__forward_is_infer(**model_config)
        else:
            model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    if not cpu_run:
        model = model.cuda()
    return model
def load_model(hparams):
    model = Tacotron2(hparams).to(device)
    if hparams.fp16_run:
        model.decoder.attention_layer.score_mask_value = finfo('float16').min

    if hparams.distributed_run:
        model = apply_gradient_allreduce(model)

    return model
def get_model(model_name, model_config, device,
              uniform_initialize_bn_weight=False, forward_is_infer=False,
              jitable=False):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        if forward_is_infer:
            class Tacotron2__forward_is_infer(Tacotron2):
                def forward(self, inputs, input_lengths):
                    return self.infer(inputs, input_lengths)
            model = Tacotron2__forward_is_infer(**model_config)
        else:
            model = Tacotron2(**model_config)

    elif model_name == 'WaveGlow':
        if forward_is_infer:
            class WaveGlow__forward_is_infer(WaveGlow):
                def forward(self, spect, sigma=1.0):
                    return self.infer(spect, sigma)
            model = WaveGlow__forward_is_infer(**model_config)
        else:
            model = WaveGlow(**model_config)

    elif model_name == 'FastPitch':

        if forward_is_infer:

            if jitable:
                class FastPitch__forward_is_infer(_FastPitchJIT):
                    def forward(self, inputs, input_lengths, pace: float = 1.0,
                                dur_tgt: Optional[torch.Tensor] = None,
                                pitch_tgt: Optional[torch.Tensor] = None,
                                pitch_transform: Optional[bool] = None):
                        return self.infer(inputs, input_lengths, pace=pace,
                                          dur_tgt=dur_tgt, pitch_tgt=pitch_tgt)
            else:
                class FastPitch__forward_is_infer(_FastPitch):
                    def forward(self, inputs, input_lengths, pace: float = 1.0,
                                dur_tgt: Optional[torch.Tensor] = None,
                                pitch_tgt: Optional[torch.Tensor] = None,
                                pitch_transform=None):
                        return self.infer(inputs, input_lengths, pace=pace,
                                          dur_tgt=dur_tgt, pitch_tgt=pitch_tgt,
                                          pitch_transform=pitch_transform)

            model = FastPitch__forward_is_infer(**model_config)
        else:
            model = _FastPitch(**model_config)

    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    return model.to(device)
Exemple #4
0
def get_model(model_name, model_config, to_cuda):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)
    if to_cuda:
        model = model.cuda()
    return model
Exemple #5
0
def get_model(model_name: str,
              model_config: dict,
              cpu_run: bool,
              uniform_initialize_bn_weight: bool = False,
              forward_is_infer: bool = False):
    """Return a model based on `model_name` defined by `model_config`.

    Args:
        model_name (str): One of the 'Tacotron2' or 'WaveGlow'.
        model_config (dict): [description]
        cpu_run (bool): Run on CPU (True) or GPU (False).
        uniform_initialize_bn_weight (bool, optional): [description]. Defaults to False.
        forward_is_infer (bool, optional): [description]. Defaults to False.

    Raises:
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """

    model = None
    if model_name == 'Tacotron2':
        if forward_is_infer:

            class Tacotron2__forward_is_infer(Tacotron2):
                def forward(self, inputs, input_lengths):
                    print(input_lengths)  #FIXME
                    return self.infer(inputs, input_lengths)

            model = Tacotron2__forward_is_infer(**model_config)
        else:
            model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        if forward_is_infer:

            class WaveGlow__forward_is_infer(WaveGlow):
                def forward(self, spect, sigma=1.0):
                    return self.infer(spect, sigma)

            model = WaveGlow__forward_is_infer(**model_config)
        else:
            model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    if cpu_run == False:
        model = model.cuda()
    return model
Exemple #6
0
def get_model(model_name, model_config, to_cuda,
              uniform_initialize_bn_weight=False):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    if to_cuda:
        model = model.cuda()
    return model
Exemple #7
0
def get_model(model_name, model_config, to_fp16, to_cuda, training=True):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)
    if to_fp16:
        model = batchnorm_to_float(model.half())
        model = lstmcell_to_float(model)
        if model_name == "WaveGlow":
            for k in model.convinv:
                k.float()
    if to_cuda:
        model = model.cuda()
    return model
Exemple #8
0
def get_tacotron2_model(args, is_training=True):
    config = dict(
        # optimization
        mask_padding=args.mask_padding,
        # audio
        n_mel_channels=args.n_mel_channels,
        # symbols
        n_symbols=args.n_symbols,
        symbols_embedding_dim=args.symbols_embedding_dim,
        # encoder
        encoder_kernel_size=args.encoder_kernel_size,
        encoder_n_convolutions=args.encoder_n_convolutions,
        encoder_embedding_dim=args.encoder_embedding_dim,
        # attention
        attention_dim=args.attention_dim,
        # attention location
        attention_location_n_filters=args.attention_location_n_filters,
        attention_location_kernel_size=args.attention_location_kernel_size,
        # decoder
        n_frames_per_step=args.n_frames_per_step,
        decoder_rnn_dim=args.decoder_rnn_dim,
        prenet_dim=args.prenet_dim,
        max_decoder_steps=args.max_decoder_steps,
        gate_threshold=args.gate_threshold,
        decoder_n_lstms=args.decoder_n_lstms,
        p_decoder_dropout=args.p_decoder_dropout,
        # postnet
        postnet_embedding_dim=args.postnet_embedding_dim,
        postnet_kernel_size=args.postnet_kernel_size,
        postnet_n_convolutions=args.postnet_n_convolutions,
    )

    model = Tacotron2(**config)

    if is_training:
        _init_bn(model)

    return model.cuda()
Exemple #9
0
def get_model(model_name, model_config, to_cuda,
              uniform_initialize_bn_weight=False, rename=False):
    """ Code chooses a model based on name"""
    model = None
    if model_name == 'Tacotron2':
        if rename:
            class Tacotron2_extra(Tacotron2):
                def forward(self, inputs, input_lengths):
                    return self.infer(inputs, input_lengths)
            model = Tacotron2_extra(**model_config)
        else:
            model = Tacotron2(**model_config)
    elif model_name == 'WaveGlow':
        model = WaveGlow(**model_config)
    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    if to_cuda:
        model = model.cuda()
    return model