def field(dtype, shape=None, offset=None, needs_grad=False): _taichi_skip_traceback = 1 dtype = cook_dtype(dtype) if isinstance(shape, numbers.Number): shape = (shape, ) if isinstance(offset, numbers.Number): offset = (offset, ) if shape is not None and offset is not None: assert len(shape) == len( offset ), f'The dimensionality of shape and offset must be the same ({len(shape)} != {len(offset)})' assert (offset is not None and shape is None ) == False, f'The shape cannot be None when offset is being set' if get_runtime().materialized: raise RuntimeError( "No new variables can be declared after materialization, i.e. kernel invocations " "or Python-scope field accesses. I.e., data layouts must be specified before " "any computation. Try appending ti.init() or ti.reset() " "right after 'import taichi as ti' if you are using Jupyter notebook or Blender." ) del _taichi_skip_traceback # primal x = Expr(_ti_core.make_id_expr("")) x.declaration_tb = get_traceback(stacklevel=2) x.ptr = _ti_core.global_new(x.ptr, dtype) x.ptr.set_is_primal(True) pytaichi.global_vars.append(x) if _ti_core.needs_grad(dtype): # adjoint x_grad = Expr(_ti_core.make_id_expr("")) x_grad.ptr = _ti_core.global_new(x_grad.ptr, dtype) x_grad.ptr.set_is_primal(False) x.set_grad(x_grad) if shape is not None: dim = len(shape) root.dense(index_nd(dim), shape).place(x, offset=offset) if needs_grad: root.dense(index_nd(dim), shape).place(x.grad) return x
def field(dtype, shape=None, name="", offset=None, needs_grad=False): _taichi_skip_traceback = 1 dtype = cook_dtype(dtype) if isinstance(shape, numbers.Number): shape = (shape, ) if isinstance(offset, numbers.Number): offset = (offset, ) if shape is not None and offset is not None: assert len(shape) == len( offset ), f'The dimensionality of shape and offset must be the same ({len(shape)} != {len(offset)})' assert (offset is not None and shape is None ) == False, f'The shape cannot be None when offset is being set' del _taichi_skip_traceback # primal x = Expr(_ti_core.make_id_expr("")) x.declaration_tb = get_traceback(stacklevel=2) x.ptr = _ti_core.global_new(x.ptr, dtype) x.ptr.set_name(name) x.ptr.set_is_primal(True) pytaichi.global_vars.append(x) if _ti_core.needs_grad(dtype): # adjoint x_grad = Expr(_ti_core.make_id_expr("")) x_grad.ptr = _ti_core.global_new(x_grad.ptr, dtype) x_grad.ptr.set_name(name + ".grad") x_grad.ptr.set_is_primal(False) x.set_grad(x_grad) if shape is not None: dim = len(shape) root.dense(index_nd(dim), shape).place(x, offset=offset) if needs_grad: root.dense(index_nd(dim), shape).place(x.grad) return x
def create_field_member(dtype, name): dtype = cook_dtype(dtype) # primal x = Expr(_ti_core.make_id_expr("")) x.declaration_tb = get_traceback(stacklevel=2) x.ptr = _ti_core.global_new(x.ptr, dtype) x.ptr.set_name(name) x.ptr.set_is_primal(True) pytaichi.global_vars.append(x) x_grad = None if _ti_core.needs_grad(dtype): # adjoint x_grad = Expr(_ti_core.make_id_expr("")) x_grad.ptr = _ti_core.global_new(x_grad.ptr, dtype) x_grad.ptr.set_name(name + ".grad") x_grad.ptr.set_is_primal(False) x.ptr.set_grad(x_grad.ptr) return x, x_grad
def field(dtype, shape=None, name="", offset=None, needs_grad=False): """Defines a Taichi field A Taichi field can be viewed as an abstract N-dimensional array, hiding away the complexity of how its underlying :class:`~taichi.lang.snode.SNode` are actually defined. The data in a Taichi field can be directly accessed by a Taichi :func:`~taichi.lang.kernel_impl.kernel`. See also https://docs.taichi.graphics/docs/lang/articles/basic/field Args: dtype (DataType): data type of the field. shape (Union[int, tuple[int]], optional): shape of the field name (str, optional): name of the field offset (Union[int, tuple[int]], optional): offset of the field domain needs_grad (bool, optional): whether this field participates in autodiff and thus needs an adjoint field to store the gradients. Example: The code below shows how a Taichi field can be declared and defined:: >>> x1 = ti.field(ti.f32, shape=(16, 8)) >>> >>> # Equivalently >>> x2 = ti.field(ti.f32) >>> ti.root.dense(ti.ij, shape=(16, 8)).place(x2) """ _taichi_skip_traceback = 1 dtype = cook_dtype(dtype) if isinstance(shape, numbers.Number): shape = (shape, ) if isinstance(offset, numbers.Number): offset = (offset, ) if shape is not None and offset is not None: assert len(shape) == len( offset ), f'The dimensionality of shape and offset must be the same ({len(shape)} != {len(offset)})' assert (offset is not None and shape is None ) == False, f'The shape cannot be None when offset is being set' del _taichi_skip_traceback # primal x = Expr(_ti_core.make_id_expr("")) x.declaration_tb = get_traceback(stacklevel=2) x.ptr = _ti_core.global_new(x.ptr, dtype) x.ptr.set_name(name) x.ptr.set_is_primal(True) pytaichi.global_vars.append(x) if _ti_core.needs_grad(dtype): # adjoint x_grad = Expr(_ti_core.make_id_expr("")) x_grad.ptr = _ti_core.global_new(x_grad.ptr, dtype) x_grad.ptr.set_name(name + ".grad") x_grad.ptr.set_is_primal(False) x.set_grad(x_grad) if shape is not None: dim = len(shape) root.dense(index_nd(dim), shape).place(x, offset=offset) if needs_grad: root.dense(index_nd(dim), shape).place(x.grad) return x