def to_numpy(self): import numpy as np from taichi.lang.meta import tensor_to_ext_arr arr = np.zeros(shape=self.shape, dtype=to_numpy_type(self.dtype)) tensor_to_ext_arr(self, arr) ti.sync() return arr
def to_torch(self, device=None): import torch from taichi.lang.meta import tensor_to_ext_arr arr = torch.zeros(size=self.shape, dtype=to_pytorch_type(self.dtype), device=device) tensor_to_ext_arr(self, arr) ti.sync() return arr
def to_numpy(self, dtype=None): if dtype is None: dtype = to_numpy_type(self.dtype) import numpy as np arr = np.zeros(shape=self.shape, dtype=dtype) from taichi.lang.meta import tensor_to_ext_arr tensor_to_ext_arr(self, arr) ti.sync() return arr
def to_numpy(self): """Create a numpy array containing the same elements when the class itself represents GlobalVariableExpression (field) or ExternalTensorExpression internally. This is an unified interface to match :func:`taichi.lang.Matrix.to_numpy`. Returns: The numpy array containing the same elements when the class itself represents GlobalVariableExpression (field) or ExternalTensorExpression internally. """ import numpy as np from taichi.lang.meta import tensor_to_ext_arr arr = np.zeros(shape=self.shape, dtype=to_numpy_type(self.dtype)) tensor_to_ext_arr(self, arr) ti.sync() return arr
def to_torch(self, device=None): """Create a torch array containing the same elements when the class itself represents GlobalVariableExpression (field) or ExternalTensorExpression internally. This is an unified interface to match :func:`taichi.lang.Matrix.to_torch`. Args: device (DeviceType): The device type as a parameter passed into torch.zeros(). Returns: The torch array containing the same elements when the class itself represents GlobalVariableExpression (field) or ExternalTensorExpression internally. """ import torch from taichi.lang.meta import tensor_to_ext_arr arr = torch.zeros(size=self.shape, dtype=to_pytorch_type(self.dtype), device=device) tensor_to_ext_arr(self, arr) ti.sync() return arr