Exemple #1
0
 def foo():
     ti.block_dim(512)
     ti.block_local(a)
     for i, j in a:
         for k in range(stencil_length):
             b[i, j] += a[i + k, j]
             b[i, j] += a[i, j + k]
 def g2p(self, dt: ti.f32):
     ti.block_dim(256)
     ti.block_local(*self.grid_v.entries)
     ti.no_activate(self.particle)
     for I in ti.grouped(self.pid):
         p = self.pid[I]
         base = ti.floor(self.x[p] * self.inv_dx - 0.5).cast(int)
         for D in ti.static(range(self.dim)):
             base[D] = ti.assume_in_range(base[D], I[D], 0, 1)
         fx = self.x[p] * self.inv_dx - base.cast(float)
         w = [
             0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2
         ]
         new_v = ti.Vector.zero(ti.f32, self.dim)
         new_C = ti.Matrix.zero(ti.f32, self.dim, self.dim)
         # loop over 3x3 grid node neighborhood
         for offset in ti.static(ti.grouped(self.stencil_range())):
             dpos = offset.cast(float) - fx
             g_v = self.grid_v[base + offset]
             weight = 1.0
             for d in ti.static(range(self.dim)):
                 weight *= w[offset[d]][d]
             new_v += weight * g_v
             new_C += 4 * self.inv_dx * weight * g_v.outer_product(dpos)
         self.v[p], self.C[p] = new_v, new_C
         self.x[p] += dt * self.v[p]  # advection
Exemple #3
0
 def copy(bls: ti.template(), w: ti.template()):
     if ti.static(bls):
         ti.block_local(x, y, z)
     for i, j in x:
         w[i,
           j] = x[i, j - 2] + y[i + 2, j -
                                1] + y[i - 1, j] + z[i - 1, j] + z[i + 1, j]
Exemple #4
0
def update_Q(rk_step: ti.template()):
    ti.block_dim(256)
    ti.block_local(F_x, F_y)
    for i, j in Q:
        if is_interior_cell(i, j):
            if ti.static(rk_step == 0):
                Q[i, j] = Q[i, j] + dt[None] * (F_x[i, j] - F_x[i + 1, j] +
                                                F_y[i, j] - F_y[i, j + 1]) / h
            if ti.static(rk_step == 1):
                Q[i, j] = (Q[i, j] + Q_old[i, j]) / 2.0 + dt[None] * (
                    F_x[i, j] - F_x[i + 1, j] + F_y[i, j] - F_y[i, j + 1]) / h
Exemple #5
0
 def triple_for():
     ti.block_local(a)
     ti.block_local(b)
     for i in range(N - M):
         for k in range(N):
             weight = 1.0
             for j in range(M):
                 weight *= a[i + j]
             s = 0.0
             for j in range(2 * M):
                 s += weight + b[2 * i + j]
             f[i, k] = s
Exemple #6
0
    def p2g(use_shared: ti.template(), m: ti.template()):
        ti.block_dim(256)
        if ti.static(use_shared):
            ti.block_local(m)
        for I in ti.grouped(pid):
            p = pid[I]

            u_ = ti.floor(x[p] * N).cast(ti.i32)
            Im = ti.rescale_index(pid, m, I)
            u0 = ti.assume_in_range(u_[0], Im[0], 0, 1)
            u1 = ti.assume_in_range(u_[1], Im[1], 0, 1)

            u = ti.Vector([u0, u1])

            for offset in ti.static(ti.grouped(ti.ndrange(extend, extend))):
                m[u + offset] += scatter_weight
Exemple #7
0
    def apply(use_bls: ti.template(), y: ti.template()):
        if ti.static(use_bls and not scatter):
            ti.block_local(x)
        if ti.static(use_bls and scatter):
            ti.block_local(y)

        ti.block_dim(block_dim)
        for I in ti.grouped(x):
            if ti.static(scatter):
                for offset in ti.static(stencil):
                    y[I + ti.Vector(offset)] += x[I]
            else:
                # gather
                s = 0
                for offset in ti.static(stencil):
                    s = s + x[I + ti.Vector(offset)]
                y[I] = s
Exemple #8
0
    def stencil_2d(y: ti.template(), x: ti.template()):
        #reference: tests/python/bls_test_template.py
        if ti.static(bls and not scatter):
            ti.block_local(x)
        if ti.static(bls and scatter):
            ti.block_local(y)
        ti.block_dim(64)  # 8*8=64

        for I in ti.grouped(x):
            if ti.static(scatter):
                for offset in ti.static(stencil_common):
                    y[I + ti.Vector(offset)] += x[I]
            else:  # gather
                s = ti.cast(0.0, dtype)
                for offset in ti.static(stencil_common):
                    s = s + x[I + ti.Vector(offset)]
                y[I] = s
Exemple #9
0
def compute_F():
    ti.block_dim(256)
    ti.block_local(W)
    for i, j in Q:
        if is_interior_x_face(i, j):
            # muscl reconstrucion of left and right states with HLLC flux
            wL = ti.Vector([0.0, 0.0, 0.0, 0.0])
            wR = ti.Vector([0.0, 0.0, 0.0, 0.0])
            for f in ti.static(range(4)):
                ratio_l = (W[i, j][f] - W[i - 1, j][f]) / (W[i - 1, j][f] -
                                                           W[i - 2, j][f])
                ratio_r = (W[i, j][f] - W[i - 1, j][f]) / (W[i + 1, j][f] -
                                                           W[i, j][f])
                wL[f] = W[i - 1, j][f] + 0.5 * mc_lim(ratio_l) * (
                    W[i - 1, j][f] - W[i - 2, j][f])
                wR[f] = W[i, j][f] - 0.5 * mc_lim(ratio_r) * (W[i + 1, j][f] -
                                                              W[i, j][f])
            F_x[i, j] = HLLC_flux(w_to_u(wL), w_to_u(wR), ti.Vector([1.0,
                                                                     0.0]))

        elif is_boundary_x_face(i, j):
            F_x[i, j] = HLLC_flux(Q[i - 1, j], Q[i, j], ti.Vector([1.0, 0.0]))

        if is_interior_y_face(i, j):
            # muscl reconstrucion of left and right states with HLLC flux
            wL = ti.Vector([0.0, 0.0, 0.0, 0.0])
            wR = ti.Vector([0.0, 0.0, 0.0, 0.0])
            for f in ti.static(range(4)):
                ratio_l = (W[i, j][f] - W[i, j - 1][f]) / (W[i, j - 1][f] -
                                                           W[i, j - 2][f])
                ratio_r = (W[i, j][f] - W[i, j - 1][f]) / (W[i, j + 1][f] -
                                                           W[i, j][f])
                wL[f] = W[i, j - 1][f] + 0.5 * mc_lim(ratio_l) * (
                    W[i, j - 1][f] - W[i, j - 2][f])
                wR[f] = W[i, j][f] - 0.5 * mc_lim(ratio_r) * (W[i, j + 1][f] -
                                                              W[i, j][f])
            F_y[i, j] = HLLC_flux(w_to_u(wL), w_to_u(wR), ti.Vector([0.0,
                                                                     1.0]))

        elif is_boundary_y_face(i, j):
            F_y[i, j] = HLLC_flux(Q[i, j - 1], Q[i, j], ti.Vector([0.0, 1.0]))
Exemple #10
0
    def g2p(use_shared: ti.template(), s: ti.template()):
        ti.block_dim(256)
        if ti.static(use_shared):
            ti.block_local(m1)
        for I in ti.grouped(pid):
            p = pid[I]

            u_ = ti.floor(x[p] * N).cast(ti.i32)

            Im = ti.rescale_index(pid, m1, I)
            u0 = ti.assume_in_range(u_[0], Im[0], 0, 1)
            u1 = ti.assume_in_range(u_[1], Im[1], 0, 1)

            u = ti.Vector([u0, u1])

            tot = 0.0

            for offset in ti.static(ti.grouped(ti.ndrange(extend, extend))):
                tot += m1[u + offset]

            s[p] = tot
Exemple #11
0
 def copy():
     ti.block_local(x)
     for i, j in x:
         y[i, j] = x[i, j]
Exemple #12
0
 def copy():
     ti.block_local(x)
     for i in x:
         y[i] = x[i]
    def p2g(self, dt: ti.f32):
        ti.no_activate(self.particle)
        ti.block_dim(256)
        ti.block_local(*self.grid_v.entries)
        ti.block_local(self.grid_m)
        for I in ti.grouped(self.pid):
            p = self.pid[I]
            base = ti.floor(self.x[p] * self.inv_dx - 0.5).cast(int)
            for D in ti.static(range(self.dim)):
                base[D] = ti.assume_in_range(base[D], I[D], 0, 1)

            fx = self.x[p] * self.inv_dx - base.cast(float)
            # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
            w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            # deformation gradient update
            self.F[p] = (ti.Matrix.identity(ti.f32, self.dim) +
                         dt * self.C[p]) @ self.F[p]
            # Hardening coefficient: snow gets harder when compressed
            h = ti.exp(10 * (1.0 - self.Jp[p]))
            if self.material[
                    p] == self.material_elastic:  # jelly, make it softer
                h = 0.3
            mu, la = self.mu_0 * h, self.lambda_0 * h
            if self.material[p] == self.material_water:  # liquid
                mu = 0.0
            U, sig, V = ti.svd(self.F[p])
            J = 1.0
            if self.material[p] != self.material_sand:
                for d in ti.static(range(self.dim)):
                    new_sig = sig[d, d]
                    if self.material[p] == self.material_snow:  # Snow
                        new_sig = min(max(sig[d, d], 1 - 2.5e-2),
                                      1 + 4.5e-3)  # Plasticity
                    self.Jp[p] *= sig[d, d] / new_sig
                    sig[d, d] = new_sig
                    J *= new_sig
            if self.material[p] == self.material_water:
                # Reset deformation gradient to avoid numerical instability
                new_F = ti.Matrix.identity(ti.f32, self.dim)
                new_F[0, 0] = J
                self.F[p] = new_F
            elif self.material[p] == self.material_snow:
                # Reconstruct elastic deformation gradient after plasticity
                self.F[p] = U @ sig @ V.transpose()

            stress = ti.Matrix.zero(ti.f32, self.dim, self.dim)

            if self.material[p] != self.material_sand:
                stress = 2 * mu * (
                    self.F[p] - U @ V.transpose()) @ self.F[p].transpose(
                    ) + ti.Matrix.identity(ti.f32, self.dim) * la * J * (J - 1)
            else:
                sig = self.sand_projection(sig, p)
                self.F[p] = U @ sig @ V.transpose()
                log_sig_sum = 0.0
                center = ti.Matrix.zero(ti.f32, self.dim, self.dim)
                for i in ti.static(range(self.dim)):
                    log_sig_sum += ti.log(sig[i, i])
                    center[i, i] = 2.0 * self.mu_0 * ti.log(
                        sig[i, i]) * (1 / sig[i, i])
                for i in ti.static(range(self.dim)):
                    center[i,
                           i] += self.lambda_0 * log_sig_sum * (1 / sig[i, i])
                stress = U @ center @ V.transpose() @ self.F[p].transpose()

            stress = (-dt * self.p_vol * 4 * self.inv_dx**2) * stress
            affine = stress + self.p_mass * self.C[p]

            # Loop over 3x3 grid node neighborhood
            for offset in ti.static(ti.grouped(self.stencil_range())):
                dpos = (offset.cast(float) - fx) * self.dx
                weight = 1.0
                for d in ti.static(range(self.dim)):
                    weight *= w[offset[d]][d]
                self.grid_v[base +
                            offset] += weight * (self.p_mass * self.v[p] +
                                                 affine @ dpos)
                self.grid_m[base + offset] += weight * self.p_mass
    def p2g(self, dt: ti.f32):
        ti.no_activate(self.particle)
        ti.block_dim(256)
        if ti.static(self.use_bls):
            for d in ti.static(range(self.dim)):
                ti.block_local(self.grid_v.get_scalar_field(d))
            ti.block_local(self.grid_m)
        for I in ti.grouped(self.pid):
            p = self.pid[I]
            base = ti.floor(self.x[p] * self.inv_dx - 0.5).cast(int)
            Im = ti.rescale_index(self.pid, self.grid_m, I)
            for D in ti.static(range(self.dim)):
                # For block shared memory: hint compiler that there is a connection between `base` and loop index `I`
                base[D] = ti.assume_in_range(base[D], Im[D], 0, 1)

            fx = self.x[p] * self.inv_dx - base.cast(float)
            # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
            w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            # Deformation gradient update
            F = self.F[p]
            if self.material[p] == self.material_water:  # liquid
                F = ti.Matrix.identity(ti.f32, self.dim)
                if ti.static(self.support_plasticity):
                    F[0, 0] = self.Jp[p]

            F = (ti.Matrix.identity(ti.f32, self.dim) + dt * self.C[p]) @ F
            # Hardening coefficient: snow gets harder when compressed
            h = 1.0
            if ti.static(self.support_plasticity):
                if self.material[p] != self.material_water:
                    h = ti.exp(10 * (1.0 - self.Jp[p]))
            if self.material[
                    p] == self.material_elastic:  # jelly, make it softer
                h = 0.3
            mu, la = self.mu_0 * h, self.lambda_0 * h
            if self.material[p] == self.material_water:  # liquid
                mu = 0.0
            U, sig, V = ti.svd(F)
            J = 1.0
            if self.material[p] != self.material_sand:
                for d in ti.static(range(self.dim)):
                    new_sig = sig[d, d]
                    if self.material[p] == self.material_snow:  # Snow
                        new_sig = min(max(sig[d, d], 1 - 2.5e-2),
                                      1 + 4.5e-3)  # Plasticity
                    if ti.static(self.support_plasticity):
                        self.Jp[p] *= sig[d, d] / new_sig
                    sig[d, d] = new_sig
                    J *= new_sig
            if self.material[p] == self.material_water:
                # Reset deformation gradient to avoid numerical instability
                F = ti.Matrix.identity(ti.f32, self.dim)
                F[0, 0] = J
                if ti.static(self.support_plasticity):
                    self.Jp[p] = J
            elif self.material[p] == self.material_snow:
                # Reconstruct elastic deformation gradient after plasticity
                F = U @ sig @ V.transpose()

            stress = ti.Matrix.zero(ti.f32, self.dim, self.dim)

            if self.material[p] != self.material_sand:
                stress = 2 * mu * (F - U @ V.transpose()) @ F.transpose(
                ) + ti.Matrix.identity(ti.f32, self.dim) * la * J * (J - 1)
            else:
                if ti.static(self.support_plasticity):
                    sig = self.sand_projection(sig, p)
                    F = U @ sig @ V.transpose()
                    log_sig_sum = 0.0
                    center = ti.Matrix.zero(ti.f32, self.dim, self.dim)
                    for i in ti.static(range(self.dim)):
                        log_sig_sum += ti.log(sig[i, i])
                        center[i, i] = 2.0 * self.mu_0 * ti.log(
                            sig[i, i]) * (1 / sig[i, i])
                    for i in ti.static(range(self.dim)):
                        center[i,
                               i] += self.lambda_0 * log_sig_sum * (1 /
                                                                    sig[i, i])
                    stress = U @ center @ V.transpose() @ F.transpose()
            self.F[p] = F

            stress = (-dt * self.p_vol * 4 * self.inv_dx**2) * stress
            # TODO: implement g2p2g pmass
            mass = self.p_mass
            if self.material[p] == self.material_water:
                mass *= self.water_density
            affine = stress + mass * self.C[p]

            # Loop over 3x3 grid node neighborhood
            for offset in ti.static(ti.grouped(self.stencil_range())):
                dpos = (offset.cast(float) - fx) * self.dx
                weight = 1.0
                for d in ti.static(range(self.dim)):
                    weight *= w[offset[d]][d]
                self.grid_v[base + offset] += weight * (mass * self.v[p] +
                                                        affine @ dpos)
                self.grid_m[base + offset] += weight * mass
    def g2p2g(self, dt: ti.f32, pid: ti.template(), grid_v_in: ti.template(),
              grid_v_out: ti.template(), grid_m_out: ti.template()):
        ti.block_dim(256)
        ti.no_activate(self.particle)
        if ti.static(self.use_bls):
            ti.block_local(grid_m_out)
            for d in ti.static(range(self.dim)):
                ti.block_local(grid_v_in.get_scalar_field(d))
                ti.block_local(grid_v_out.get_scalar_field(d))
        for I in ti.grouped(pid):
            p = pid[I]
            # G2P
            base = ti.floor(self.x[p] * self.inv_dx - 0.5).cast(int)
            Im = ti.rescale_index(pid, grid_m_out, I)
            for D in ti.static(range(self.dim)):
                base[D] = ti.assume_in_range(base[D], Im[D], 0, 1)
            fx = self.x[p] * self.inv_dx - base.cast(float)
            w = [
                0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2
            ]
            new_v = ti.Vector.zero(ti.f32, self.dim)
            C = ti.Matrix.zero(ti.f32, self.dim, self.dim)
            # Loop over 3x3 grid node neighborhood
            for offset in ti.static(ti.grouped(self.stencil_range())):
                dpos = offset.cast(float) - fx
                g_v = grid_v_in[base + offset]
                weight = 1.0
                for d in ti.static(range(self.dim)):
                    weight *= w[offset[d]][d]
                new_v += weight * g_v
                C += 4 * self.inv_dx * weight * g_v.outer_product(dpos)

            if p >= self.last_time_final_particles[None]:
                # New particles. No G2P.
                new_v = self.v[p]
                C = ti.Matrix.zero(ti.f32, self.dim, self.dim)

            if self.material[p] != self.material_stationary:
                self.v[p] = new_v
                self.x[p] += dt * self.v[p]  # advection

            # P2G
            base = ti.floor(self.x[p] * self.inv_dx - 0.5).cast(int)
            for D in ti.static(range(self.dim)):
                base[D] = ti.assume_in_range(base[D], Im[D], -1, 2)

            fx = self.x[p] * self.inv_dx - base.cast(float)
            # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
            w2 = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            # Deformation gradient update
            new_F = (ti.Matrix.identity(ti.f32, self.dim) + dt * C) @ self.F[p]
            if ti.static(self.quant):
                new_F = max(-self.F_bound, min(self.F_bound, new_F))
            self.F[p] = new_F
            # Hardening coefficient: snow gets harder when compressed
            h = 1.0
            if ti.static(self.support_plasticity):
                h = ti.exp(10 * (1.0 - self.Jp[p]))
            if self.material[
                    p] == self.material_elastic:  # Jelly, make it softer
                h = 0.3
            mu, la = self.mu_0 * h, self.lambda_0 * h
            if self.material[p] == self.material_water:  # Liquid
                mu = 0.0
            U, sig, V = ti.svd(self.F[p])
            J = 1.0
            if self.material[p] != self.material_sand:
                for d in ti.static(range(self.dim)):
                    new_sig = sig[d, d]
                    if self.material[p] == self.material_snow:  # Snow
                        new_sig = min(max(sig[d, d], 1 - 2.5e-2),
                                      1 + 4.5e-3)  # Plasticity
                    if ti.static(self.support_plasticity):
                        self.Jp[p] *= sig[d, d] / new_sig
                    sig[d, d] = new_sig
                    J *= new_sig
            if self.material[p] == self.material_water:
                # Reset deformation gradient to avoid numerical instability
                new_F = ti.Matrix.identity(ti.f32, self.dim)
                new_F[0, 0] = J
                self.F[p] = new_F
            elif self.material[p] == self.material_snow:
                # Reconstruct elastic deformation gradient after plasticity
                self.F[p] = U @ sig @ V.transpose()

            stress = ti.Matrix.zero(ti.f32, self.dim, self.dim)

            if self.material[p] != self.material_sand:
                stress = 2 * mu * (
                    self.F[p] - U @ V.transpose()) @ self.F[p].transpose(
                    ) + ti.Matrix.identity(ti.f32, self.dim) * la * J * (J - 1)
            else:
                if ti.static(self.support_plasticity):
                    sig = self.sand_projection(sig, p)
                    self.F[p] = U @ sig @ V.transpose()
                    log_sig_sum = 0.0
                    center = ti.Matrix.zero(ti.f32, self.dim, self.dim)
                    for i in ti.static(range(self.dim)):
                        log_sig_sum += ti.log(sig[i, i])
                        center[i, i] = 2.0 * self.mu_0 * ti.log(
                            sig[i, i]) * (1 / sig[i, i])
                    for i in ti.static(range(self.dim)):
                        center[i,
                               i] += self.lambda_0 * log_sig_sum * (1 /
                                                                    sig[i, i])
                    stress = U @ center @ V.transpose() @ self.F[p].transpose()

            stress = (-dt * self.p_vol * 4 * self.inv_dx**2) * stress
            affine = stress + self.p_mass * C

            # Loop over 3x3 grid node neighborhood
            for offset in ti.static(ti.grouped(self.stencil_range())):
                dpos = (offset.cast(float) - fx) * self.dx
                weight = 1.0
                for d in ti.static(range(self.dim)):
                    weight *= w2[offset[d]][d]
                grid_v_out[base +
                           offset] += weight * (self.p_mass * self.v[p] +
                                                affine @ dpos)
                grid_m_out[base + offset] += weight * self.p_mass

        self.last_time_final_particles[None] = self.n_particles[None]
Exemple #16
0
 def call_block_local():
     ti.block_local(x)