Exemple #1
0
 def test_grad(self):
     """Check that gradient accurately gives result of small change in
     output (transition weight) matrix"""
     self.outputs.requires_grad = True
     for ks, seq in self.sequences.items():
         lossvector = ctc.crf_flipflop_loss(self.outputs, seq, self.seqlens,
                                            self.sharpen)
         print("Sequence: {}: P={:3.4f}, loss={:3.4f}".format(
             ks, float(torch.exp(-lossvector * self.nblocks)),
             float(lossvector)))
         loss = torch.sum(lossvector)
         if self.outputs.grad is not None:
             self.outputs.grad.data.zero_()
         loss.backward()
         # Make random small change in outputs
         small_change = torch.randn_like(self.outputs) * self.dx_size
         outputs2 = self.outputs.detach() + small_change
         lossvector2 = ctc.crf_flipflop_loss(outputs2, seq, self.seqlens,
                                             self.sharpen)
         loss2 = torch.sum(lossvector2)
         loss_change = float(loss2 - loss)
         loss_change_from_grad = float(
             torch.sum(small_change * self.outputs.grad))
         print(("    Change in loss = {:3.7f}, est from " +
                "grad = {:3.7f}").format(loss_change,
                                         loss_change_from_grad))
         self.assertAlmostEqual(loss_change / float(loss),
                                loss_change_from_grad / float(loss),
                                places=self.grad_dp)
Exemple #2
0
def calculate_loss(network,
                   network_is_catmod,
                   batch_gen,
                   sharpen,
                   can_mods_offsets=None,
                   mod_cat_weights=None,
                   mod_factor_t=None,
                   calc_grads=False):

    total_chunk_count = 0
    total_fval = 0
    total_samples = 0
    total_bases = 0

    rejection_dict = defaultdict(int)

    n_subbatches = 0
    for (indata, seqs, seqlens, mod_cats, sub_batch_size,
         batch_rejections) in batch_gen:
        n_subbatches += 1
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        total_chunk_count += sub_batch_size

        with torch.set_grad_enabled(calc_grads):
            outputs = network(indata)
            if network_is_catmod:
                lossvector = ctc.cat_mod_flipflop_loss(outputs, seqs, seqlens,
                                                       mod_cats,
                                                       can_mods_offsets,
                                                       mod_cat_weights,
                                                       mod_factor_t, sharpen)
            else:
                lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens,
                                                   sharpen)

            non_zero_seqlens = (seqlens > 0.0).float().sum()
            # In multi-GPU mode, gradients are synchronised when
            # loss.backward() is called. We need to make sure we are
            # calculating a gradient that can be synchronised across processes
            # - so loss must be per-block-in-batch
            loss = lossvector.sum() / non_zero_seqlens
            fval = float(loss)
        total_fval += fval
        total_samples += int(indata.nelement())
        total_bases += int(seqlens.sum())

        if calc_grads:
            loss.backward()

    if calc_grads:
        for p in network.parameters():
            if p.grad is not None:
                p.grad /= n_subbatches

    return total_chunk_count, total_fval / n_subbatches, \
        total_samples, total_bases, rejection_dict
Exemple #3
0
def calculate_loss(net_info,
                   batch_gen,
                   sharpen,
                   mod_cat_weights=None,
                   mod_factor=None,
                   calc_grads=False):
    can_mods_offsets = net_info.metadata.can_mods_offsets
    total_chunk_count = total_fval = total_samples = total_bases = \
        n_subbatches = 0
    rejection_dict = defaultdict(int)
    for (indata, seqs, seqlens, mod_cats, sub_batch_size,
         batch_rejections) in batch_gen:
        n_subbatches += 1
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        total_chunk_count += sub_batch_size

        with torch.set_grad_enabled(calc_grads):
            outputs = net_info.net(
                indata.to(get_model_device(net_info.net), non_blocking=True))
            nblk = float(outputs.shape[0])
            ntrans = outputs.shape[2]
            if net_info.metadata.is_cat_mod:
                lossvector = ctc.cat_mod_flipflop_loss(
                    outputs, seqs, seqlens, mod_cats, can_mods_offsets,
                    mod_cat_weights * mod_factor, sharpen)
                ntrans -= can_mods_offsets[-1]
            else:
                lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens,
                                                   sharpen)

            lossvector += layers.flipflop_logpartition(
                outputs[:, :, :ntrans]) / nblk

            # In multi-GPU mode, gradients are synchronised when
            # loss.backward() is called. We need to make sure we are
            # calculating a gradient that can be synchronised across processes
            # - so loss must be per-block-in-batch
            loss = lossvector.mean()

        if calc_grads:
            loss.backward()

        fval = float(loss)
        total_fval += fval
        total_samples += int(indata.nelement())
        total_bases += int(seqlens.sum())

    if calc_grads:
        for p in net_info.net.parameters():
            if p.grad is not None:
                p.grad /= n_subbatches

    return total_chunk_count, total_fval / n_subbatches, \
        total_samples, total_bases, rejection_dict
Exemple #4
0
    def test_loss(self):
        """Test that loss = exp(-sequence probability)"""
        self.outputs.requires_grad = False

        # First check normalisation of output matrix
        logpart = float(layers.log_partition_flipflop(self.outputs))
        # Print output will appear only if test fails
        print("Check normalisation: exp(log_partition_flipflop) =" +
              " {:3.4f}, log={:3.4f}".format(np.exp(logpart), logpart))
        self.assertAlmostEqual(logpart, 0.0)

        # Now check probabilities for three sequences
        for sequence_name, sequence in self.sequences.items():
            sequence_prob = self.path_probabilities[sequence_name]
            print("Sequence {} P={:3.3f} ".format(sequence_name,
                                                  sequence_prob))
            lossvector = ctc.crf_flipflop_loss(self.outputs, sequence,
                                               self.seqlens, self.sharpen)
            sequence_prob_from_ctc = float(
                torch.exp(-lossvector * self.nblocks))
            print("Pctc={:3.4f}, loss={:3.4f}".format(sequence_prob_from_ctc,
                                                      float(lossvector)))
            self.assertAlmostEqual(sequence_prob, sequence_prob_from_ctc)
def main():
    args = parser.parse_args()

    np.random.seed(args.seed)

    device = torch.device(args.device)
    if device.type == 'cuda':
        try:
            torch.cuda.set_device(device)
        except AttributeError:
            sys.stderr.write('ERROR: Torch not compiled with CUDA enabled ' +
                             'and GPU device set.')
            sys.exit(1)

    if not os.path.exists(args.output):
        os.mkdir(args.output)
    elif not args.overwrite:
        sys.stderr.write('Error: Output directory {} exists but --overwrite ' +
                         'is false\n'.format(args.output))
        exit(1)
    if not os.path.isdir(args.output):
        sys.stderr.write('Error: Output location {} is not directory\n'.format(
            args.output))
        exit(1)

    copyfile(args.model, os.path.join(args.output, 'model.py'))

    # Create a logging file to save details of chunks.
    # If args.chunk_logging_threshold is set to 0 then we log all chunks
    # including those rejected.
    chunk_log = chunk_selection.ChunkLog(args.output)

    log = helpers.Logger(os.path.join(args.output, 'model.log'), args.quiet)
    log.write('* Taiyaki version {}\n'.format(__version__))
    log.write('* Command line\n')
    log.write(' '.join(sys.argv) + '\n')
    log.write('* Loading data from {}\n'.format(args.input))
    log.write('* Per read file MD5 {}\n'.format(helpers.file_md5(args.input)))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write(('* Will train from a subset of {} strands, determined ' +
                   'by read_ids in input strand list\n').format(len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet, _, _ = per_read_file.get_alphabet_information()
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in
        # mapped_signal_files.py, based on dict)

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    # Choose a chunk length in the middle of the range for this
    sampling_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    filter_parameters = chunk_selection.sample_filter_parameters(
        read_data,
        args.sample_nreads_before_filtering,
        sampling_chunk_len,
        args,
        log,
        chunk_log=chunk_log)

    medmd, madmd = filter_parameters

    log.write(
        "* Sampled {} chunks: median(mean_dwell)={:.2f}, mad(mean_dwell)={:.2f}\n"
        .format(args.sample_nreads_before_filtering, medmd, madmd))
    log.write('* Reading network from {}\n'.format(args.model))
    nbase = len(alphabet)
    model_kwargs = {
        'stride': args.stride,
        'winlen': args.winlen,
        # Number of input features to model e.g. was >1 for event-based
        # models (level, std, dwell)
        'insize': 1,
        'size': args.size,
        'outsize': flipflopfings.nstate_flipflop(nbase)
    }
    network = helpers.load_model(args.model, **model_kwargs).to(device)
    log.write('* Network has {} parameters.\n'.format(
        sum([p.nelement() for p in network.parameters()])))

    optimizer = torch.optim.Adam(network.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay)

    lr_scheduler = optim.CosineFollowedByFlatLR(optimizer, args.lr_min,
                                                args.lr_cosine_iters)

    score_smoothed = helpers.WindowedExpSmoother()

    log.write('* Dumping initial model\n')
    helpers.save_model(network, args.output, 0)

    total_bases = 0
    total_samples = 0
    total_chunks = 0
    # To count the numbers of different sorts of chunk rejection
    rejection_dict = defaultdict(int)

    t0 = time.time()
    log.write('* Training\n')

    for i in range(args.niteration):
        lr_scheduler.step()
        # Chunk length is chosen randomly in the range given but forced to
        # be a multiple of the stride
        batch_chunk_len = (
            np.random.randint(args.chunk_len_min, args.chunk_len_max + 1) //
            args.stride) * args.stride
        # We choose the batch size so that the size of the data in the batch
        # is about the same as args.min_batch_size chunks of length
        # args.chunk_len_max
        target_batch_size = int(args.min_batch_size * args.chunk_len_max /
                                batch_chunk_len + 0.5)
        # ...but it can't be more than the number of reads.
        batch_size = min(target_batch_size, len(read_data))

        # If the logging threshold is 0 then we log all chunks, including those
        # rejected, so pass the log
        # object into assemble_batch
        if args.chunk_logging_threshold == 0:
            log_rejected_chunks = chunk_log
        else:
            log_rejected_chunks = None
        # Chunk_batch is a list of dicts.
        chunk_batch, batch_rejections = chunk_selection.assemble_batch(
            read_data,
            batch_size,
            batch_chunk_len,
            filter_parameters,
            args,
            log,
            chunk_log=log_rejected_chunks)
        total_chunks += len(chunk_batch)

        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        # Shape of input tensor must be:
        #     (timesteps) x (batch size) x (input channels)
        # in this case:
        #     batch_chunk_len x batch_size x 1
        stacked_current = np.vstack([d['current'] for d in chunk_batch]).T
        indata = torch.tensor(stacked_current,
                              device=device,
                              dtype=torch.float32).unsqueeze(2)
        # Sequence input tensor is just a 1D vector, and so is seqlens
        seqs = torch.tensor(np.concatenate([
            flipflopfings.flipflop_code(d['sequence'], nbase)
            for d in chunk_batch
        ]),
                            device=device,
                            dtype=torch.long)
        seqlens = torch.tensor([len(d['sequence']) for d in chunk_batch],
                               dtype=torch.long,
                               device=device)

        optimizer.zero_grad()
        outputs = network(indata)
        lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens,
                                           args.sharpen)
        loss = lossvector.sum() / (seqlens > 0.0).float().sum()
        loss.backward()
        optimizer.step()

        fval = float(loss)
        score_smoothed.update(fval)

        # Check for poison chunk and save losses and chunk locations if we're
        # poisoned If args.chunk_logging_threshold set to zero then we log
        # everything
        if fval / score_smoothed.value >= args.chunk_logging_threshold:
            chunk_log.write_batch(i, chunk_batch, lossvector)

        total_bases += int(seqlens.sum())
        total_samples += int(indata.nelement())

        # Doing this deletion leads to less CUDA memory usage.
        del indata, seqs, seqlens, outputs, loss, lossvector
        if device.type == 'cuda':
            torch.cuda.empty_cache()

        if (i + 1) % args.save_every == 0:
            helpers.save_model(network, args.output,
                               (i + 1) // args.save_every)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:
            # In case of super batching, additional functionality must be
            # added here
            learning_rate = lr_scheduler.get_lr()[0]
            tn = time.time()
            dt = tn - t0
            t = (
                ' {:5d} {:5.3f}  {:5.2f}s ({:.2f} ksample/s {:.2f} kbase/s) ' +
                'lr={:.2e}')
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, dt,
                         total_samples / 1000.0 / dt,
                         total_bases / 1000.0 / dt, learning_rate))
            # Write summary of chunk rejection reasons
            for k, v in rejection_dict.items():
                log.write(" {}:{} ".format(k, v))
            log.write("\n")
            total_bases = 0
            total_samples = 0
            t0 = tn

    helpers.save_model(network, args.output)
Exemple #6
0
    log.write('* Training\n')


    for i in range(args.niteration):

        idx = np.random.randint(len(chunks), size=args.batch_size)
        indata = chunks[idx].transpose(1, 0)
        indata = torch.tensor(indata[...,np.newaxis], device=device, dtype=torch.float32)
        seqs = [seq_dict[i] for i in idx]

        seqlens = torch.tensor([len(seq) for seq in seqs], dtype=torch.long, device=device)
        seqs = torch.tensor(np.concatenate(seqs), device=device, dtype=torch.long)

        optimizer.zero_grad()
        outputs = network(indata)
        lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens, 1.0)
        loss = lossvector.sum() / (seqlens > 0.0).float().sum()
        loss.backward()
        optimizer.step()

        fval = float(loss)
        score_smoothed.update(fval)

        total_bases += int(seqlens.sum())
        total_samples += int(indata.nelement())

        # Doing this deletion leads to less CUDA memory usage.
        del indata, seqs, seqlens, outputs, loss, lossvector
        if device.type == 'cuda':
            torch.cuda.empty_cache()
Exemple #7
0
        indata = torch.tensor(stacked_current,
                              device=device,
                              dtype=torch.float32).unsqueeze(2)
        # Sequence input tensor is just a 1D vector, and so is seqlens
        seqs = torch.tensor(np.concatenate([
            flipflopfings.flip_flop_code(d['sequence']) for d in chunk_batch
        ]),
                            device=device,
                            dtype=torch.long)
        seqlens = torch.tensor([len(d['sequence']) for d in chunk_batch],
                               dtype=torch.long,
                               device=device)

        optimizer.zero_grad()
        outputs = network(indata)
        lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens,
                                           args.sharpen)
        loss = lossvector.sum() / (seqlens > 0.0).float().sum()
        loss.backward()
        optimizer.step()

        fval = float(loss)
        score_smoothed.update(fval)

        # Check for poison chunk and save losses and chunk locations if we're poisoned
        # If args.chunk_logging_threshold set to zero then we log everything
        if fval / score_smoothed.value >= args.chunk_logging_threshold:
            chunk_log.write_batch(i, chunk_batch, lossvector)

        total_bases += int(seqlens.sum())
        total_samples += int(indata.nelement())