Exemple #1
0
def create_convolution(size, depth, winlen):
    conv_actfun = activation.tanh
    return layers.Serial(
        [layers.Convolution(3, size, winlen, stride=1, fun=conv_actfun)] +
        [layers.Residual(layers.Convolution(size, size, winlen, stride=1, fun=conv_actfun)) for _ in range(depth)] +
        [layers.Convolution(size, 3, winlen, stride=1, fun=activation.linear)]
    )
Exemple #2
0
    def test_003_simple_serial(self):
        W2 = np.random.normal(size=(self._SIZE, self._SIZE)).astype(taiyaki_dtype)
        res = self.res.dot(W2.transpose())

        l1 = nn.FeedForward(self._NFEATURES, self._SIZE, has_bias=True,
                            fun=activation.linear)
        nn.init_(l1.linear.weight, self.W)
        nn.init_(l1.linear.bias, self.b)
        l2 = nn.FeedForward(self._SIZE, self._SIZE, fun=activation.linear, has_bias=False)
        nn.init_(l2.linear.weight, W2)
        network = nn.Serial([l1, l2])

        with torch.no_grad():
            y = network(torch.tensor(self.x)).numpy()
        np.testing.assert_almost_equal(y, res, decimal=4)