def get_momentum_indicators(self): # https://mrjbq7.github.io/ta-lib/func_groups/momentum_indicators.html if self.verbose: print self.ticker, 'get_momentum_indicators' _a = ['open', 'high', 'low', 'close', 'volume'] inputs = {_a[i]: self.data[_a[i]].values for i in range(len(_a))} # average directional movement index self.data['mi_adx_14'] = abstract.ADX(inputs, timeperiod=14) # average directional movement index rating self.data['mi_adxr_14'] = abstract.ADX(inputs, timeperiod=14) # absolute price oscillator self.data['mi_apo'] = abstract.APO(inputs, fastperiod=12, slowperiod=26, matype=0) # aroon self.data['mi_aroon_d'], self.data['mi_aroon_u'] = abstract.AROON( inputs, timeperiod=14) # aroon oscillator self.data['mi_aroonosc'] = abstract.AROONOSC(inputs, timeperiod=14)
def __init__(self, feed: pd.DataFrame) -> None: super().__init__(feed) if self.has_enough_feed(): aroon = abstract.AROONOSC(self.feed) self.prev_aroon_val = aroon.iloc[-2] self.aroon_val = aroon.iloc[-1]
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # Momentum Indicators # ------------------------------------ # ADX dataframe['adx'] = ta.ADX(dataframe) # Plus Directional Indicator / Movement dataframe['plus_dm'] = ta.PLUS_DM(dataframe) dataframe['plus_di'] = ta.PLUS_DI(dataframe) # # Minus Directional Indicator / Movement dataframe['minus_dm'] = ta.MINUS_DM(dataframe) dataframe['minus_di'] = ta.MINUS_DI(dataframe) # Aroon, Aroon Oscillator aroon = ta.AROON(dataframe) dataframe['aroonup'] = aroon['aroonup'] dataframe['aroondown'] = aroon['aroondown'] dataframe['aroonosc'] = ta.AROONOSC(dataframe) # Awesome Oscillator dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) # # Keltner Channel # keltner = qtpylib.keltner_channel(dataframe) # dataframe["kc_upperband"] = keltner["upper"] # dataframe["kc_lowerband"] = keltner["lower"] # dataframe["kc_middleband"] = keltner["mid"] # dataframe["kc_percent"] = ( # (dataframe["close"] - dataframe["kc_lowerband"]) / # (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) # ) # dataframe["kc_width"] = ( # (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"] # ) # Ultimate Oscillator dataframe['uo'] = ta.ULTOSC(dataframe) # Commodity Channel Index: values [Oversold:-100, Overbought:100] dataframe['cci'] = ta.CCI(dataframe) # RSI dataframe['rsi'] = ta.RSI(dataframe) # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy) rsi = 0.1 * (dataframe['rsi'] - 50) dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1) # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy) dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) # Stochastic Slow stoch = ta.STOCH(dataframe) dataframe['slowd'] = stoch['slowd'] dataframe['slowk'] = stoch['slowk'] # Stochastic Fast stoch_fast = ta.STOCHF(dataframe) dataframe['fastd'] = stoch_fast['fastd'] dataframe['fastk'] = stoch_fast['fastk'] # Stochastic RSI stoch_rsi = ta.STOCHRSI(dataframe) dataframe['fastd_rsi'] = stoch_rsi['fastd'] dataframe['fastk_rsi'] = stoch_rsi['fastk'] # MACD macd = ta.MACD(dataframe) dataframe['macd'] = macd['macd'] dataframe['macdsignal'] = macd['macdsignal'] dataframe['macdhist'] = macd['macdhist'] # MFI dataframe['mfi'] = ta.MFI(dataframe) # # ROC dataframe['roc'] = ta.ROC(dataframe) # Overlap Studies # ------------------------------------ # # Bollinger Bands # bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) # dataframe['bb_lowerband'] = bollinger['lower'] # dataframe['bb_middleband'] = bollinger['mid'] # dataframe['bb_upperband'] = bollinger['upper'] # dataframe["bb_percent"] = ( # (dataframe["close"] - dataframe["bb_lowerband"]) / # (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) # ) # dataframe["bb_width"] = ( # (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] # ) # # Bollinger Bands - Weighted (EMA based instead of SMA) # weighted_bollinger = qtpylib.weighted_bollinger_bands( # qtpylib.typical_price(dataframe), window=20, stds=2 # ) # dataframe["wbb_upperband"] = weighted_bollinger["upper"] # dataframe["wbb_lowerband"] = weighted_bollinger["lower"] # dataframe["wbb_middleband"] = weighted_bollinger["mid"] # dataframe["wbb_percent"] = ( # (dataframe["close"] - dataframe["wbb_lowerband"]) / # (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) # ) # dataframe["wbb_width"] = ( # (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / # dataframe["wbb_middleband"] # ) # # EMA - Exponential Moving Average # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21) # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) # # SMA - Simple Moving Average # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3) # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5) # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10) # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21) # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50) # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100) # Parabolic SAR # dataframe['sar'] = ta.SAR(dataframe) # TEMA - Triple Exponential Moving Average # dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) # # Cycle Indicator # # ------------------------------------ # # Hilbert Transform Indicator - SineWave # hilbert = ta.HT_SINE(dataframe) # dataframe['htsine'] = hilbert['sine'] # dataframe['htleadsine'] = hilbert['leadsine'] # # Pattern Recognition - Bullish candlestick patterns # # ------------------------------------ # # Hammer: values [0, 100] # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe) # # Inverted Hammer: values [0, 100] # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe) # # Dragonfly Doji: values [0, 100] # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe) # # Piercing Line: values [0, 100] # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100] # # Morningstar: values [0, 100] # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100] # # Three White Soldiers: values [0, 100] # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100] # # Pattern Recognition - Bearish candlestick patterns # # ------------------------------------ # # Hanging Man: values [0, 100] # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe) # # Shooting Star: values [0, 100] # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe) # # Gravestone Doji: values [0, 100] # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe) # # Dark Cloud Cover: values [0, 100] # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe) # # Evening Doji Star: values [0, 100] # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe) # # Evening Star: values [0, 100] # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe) # # Pattern Recognition - Bullish/Bearish candlestick patterns # # ------------------------------------ # # Three Line Strike: values [0, -100, 100] # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe) # # Spinning Top: values [0, -100, 100] # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100] # # Engulfing: values [0, -100, 100] # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100] # # Harami: values [0, -100, 100] # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100] # # Three Outside Up/Down: values [0, -100, 100] # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100] # # Three Inside Up/Down: values [0, -100, 100] # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] # # Chart type # # ------------------------------------ # # Heikin Ashi Strategy # heikinashi = qtpylib.heikinashi(dataframe) # dataframe['ha_open'] = heikinashi['open'] # dataframe['ha_close'] = heikinashi['close'] # dataframe['ha_high'] = heikinashi['high'] # dataframe['ha_low'] = heikinashi['low'] # Retrieve best bid and best ask from the orderbook # ------------------------------------ """ # first check if dataprovider is available if self.dp: if self.dp.runmode in ('live', 'dry_run'): ob = self.dp.orderbook(metadata['pair'], 1) dataframe['best_bid'] = ob['bids'][0][0] dataframe['best_ask'] = ob['asks'][0][0] """ return dataframe
def __countAROON(self): self.aroondown, self.aroonup = ta.AROON(self.stock.inputs) self.aroonosc = ta.AROONOSC(self.stock.inputs)