Exemple #1
0
def sbm_ic(profile, particle, X0, de, yk, T0, K, K_T, fdis, t_hyd, lag_time):
    """
    Set the initial conditions for a single bubble model simulation
    
    Set up the state space at the release point for the single bubble model
    simulation
    
    Parameters
    ----------
    profile : `ambient.Profile` object
        Ambient CTD data for the model simulation
    particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object
        Object describing the properties and behavior of the particle.
    X0 : ndarray
        The release location (x, y, y) in m of the particle in the simulation
    de : float
        Initial diameter of the particle (m)
    yk : ndarray
        Initial mole fractions of each component in the particle (--)
    T0 : float, optional
        Initial temperature (K) of the particle at release if not equal 
        to the temperature of the surrounding fluid.  If omitted, the 
        model will set T0 to the ambient temperature.
    K : float
        Mass transfer reduction factor (--). Pre-multiplies the mass 
        transfer coefficients providing amplification (>1) or retardation 
        (<1) of the dissolution.  
    K_T : float
        Heat transfer reduction factor (--). Pre-multiplies the heat 
        transfer coefficient providing amplification (>1) or retardation 
        (<1) of the heat flux.
    fdis : float
        Fraction of the initial total mass (--) remaining when the 
        particle should be considered dissolved.
    t_hyd : float
        Hydrate film formation time (s).  Mass transfer is computed by clean
        bubble methods for t less than t_hyd and by dirty bubble methods
        thereafter.  The default behavior is to assume the particle is dirty
        or hydrate covered from the release.
    
    Returns
    -------
    particle : `LagrangianParticle` object
        A `LagrangianParticle` object containing a unified interface to the 
        `dbm` module and the particle-specific model parameters (e.g., mass 
        transfer reduction factor, etc.)
    y0 : ndarray
        Model state space at the release point.  Includes the current depth 
        (m), the masses (kg) of each component of the particle, and the 
        particle heat content (J)
    
    Notes
    -----
    This function converts an initial diameter and a list of mole fractions
    to the actual mass of each component in a particle.  This seems like 
    the most common method a single particle would be initialized.  Note, 
    however, that the user does not specify the mass: it is calculated in 
    this function.  If the same diameter particle is released as a deeper 
    depth, it will contain more mass (due to compressibility).  Likewise, 
    if the composition is changed while the depth and diameter are 
    maintained constant, the mass will change, altering the trajectory
    and simulation results.  If the mass is to be kept constant, this must
    be done outside this routine and the correct diameter calculated and
    passed to this function.
    
    """
    # Get the particle initial conditions from the dispersed_phases module
    m0, T0, nb0, P, Sa, Ta = dispersed_phases.initial_conditions(
        profile, X0[2], particle, yk, None, 0, de, T0)

    # Initialize a LagrangianParticle object
    particle = dispersed_phases.SingleParticle(particle, m0, T0, K, K_T, fdis,
                                               t_hyd, lag_time)

    # Assemble the state space
    y0 = np.hstack((X0, m0, T0 * np.sum(m0) * particle.cp))

    # Return the particle object and the state space
    return (particle, y0)
Exemple #2
0
    def get_particles(self, composition, data, md_gas0, md_oil0, profile, d50_gas, d50_oil, nbins,
                  T0, z0, dispersant, sigma_fac, oil, mass_frac, hydrate, inert_drop):
        """
        docstring for get_particles

        """

        # Reduce surface tension if dispersant is applied
        if dispersant is True:
            sigma = np.array([[1.], [1.]]) * sigma_fac
        else:
            sigma = np.array([[1.], [1.]])

        # Create DBM objects for the bubbles and droplets
        bubl = dbm.FluidParticle(composition, fp_type=0, sigma_correction=sigma[0], user_data=data)
        drop = dbm.FluidParticle(composition, fp_type=1, sigma_correction=sigma[1], user_data=data)

        # Get the local ocean conditions
        T, S, P = profile.get_values(z0, ['temperature', 'salinity', 'pressure'])
        rho = seawater.density(T, S, P)

        # Get the mole fractions of the released fluids
        molf_gas = bubl.mol_frac(md_gas0)
        molf_oil = drop.mol_frac(md_oil0)
        print molf_gas
        print molf_oil

        # Use the Rosin-Rammler distribution to get the mass flux in each
        # size class
#        de_gas, md_gas = sintef.rosin_rammler(nbins, d50_gas, np.sum(md_gas0),
#                                              bubl.interface_tension(md_gas0, T0, S, P),
#                                              bubl.density(md_gas0, T0, P), rho)
#        de_oil, md_oil = sintef.rosin_rammler(nbins, d50_oil, np.sum(md_oil0),
#                                              drop.interface_tension(md_oil0, T0, S, P),
#                                              drop.density(md_oil0, T0, P), rho)

        # Get the user defined particle size distibution
        de_oil, vf_oil, de_gas, vf_gas = self.userdefined_de()
        md_gas = np.sum(md_gas0) * vf_gas
        md_oil = np.sum(md_oil0) * vf_oil

        # Define a inert particle to be used if inert liquid particles are use
        # in the simulations
        molf_inert = 1.
        isfluid = True
        iscompressible = True
        rho_o = drop.density(md_oil0, T0, P)
        inert = dbm.InsolubleParticle(isfluid, iscompressible, rho_p=rho_o, gamma=40.,
                                      beta=0.0007, co=2.90075e-9)

        # Create the particle objects
        particles = []
        t_hyd = 0.

        # Bubbles
        for i in range(nbins):
            if md_gas[i] > 0.:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                            profile, z0, bubl, molf_gas, md_gas[i], 2, de_gas[i], T0)
                # Get the hydrate formation time for bubbles
                if hydrate is True and dispersant is False:
                    t_hyd = dispersed_phases.hydrate_formation_time(bubl, z0, m0, T0, profile)
                    if np.isinf(t_hyd):
                        t_hyd = 0.
                else:
                    t_hyd = 0.
                particles.append(bpm.Particle(0., 0., z0, bubl, m0, T0, nb0,
                                              1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=t_hyd))

        # Droplets
        for i in range(len(de_oil)):
            # Add the live droplets to the particle list
            if md_oil[i] > 0. and not inert_drop:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                        profile, z0, drop, molf_oil, md_oil[i], 2, de_oil[i], T0)
                # Get the hydrate formation time for bubbles
                if hydrate is True and dispersant is False:
                    t_hyd = dispersed_phases.hydrate_formation_time(drop, z0, m0, T0, profile)
                    if np.isinf(t_hyd):
                            t_hyd = 0.
                else:
                    t_hyd = 0.
                particles.append(bpm.Particle(0., 0., z0, drop, m0, T0, nb0,
                                                1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=t_hyd))
            # Add the inert droplets to the particle list
            if md_oil[i] > 0. and inert_drop is True:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                        profile, z0, inert, molf_oil, md_oil[i], 2, de_oil[i], T0)
                particles.append(bpm.Particle(0., 0., z0, inert, m0, T0, nb0,
                        1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

        # Define the lambda for particles
        model = params.Scales(profile, particles)
        for j in range(len(particles)):
            particles[j].lambda_1 = model.lambda_1(z0, j)

        # Return the particle list
        return particles
def crossflow_plume(fig):
    """
    Define, run, and plot the simulations for a pure bubble plume in crossflow
    for validation to data in Socolofsky and Adams (2002).
    
    """
    # Jet initial conditions
    z0 = 0.64
    U0 = 0.
    phi_0 = -np.pi / 2.
    theta_0 = 0.
    D = 0.01
    Tj = 21. + 273.15
    Sj = 0.
    cj = 1.
    chem_name = 'tracer'

    # Ambient conditions
    ua = 0.15
    T = 0.
    F = 0.
    H = 1.0

    # Create the correct ambient profile data
    uj = U0 * np.cos(phi_0) * np.cos(theta_0)
    vj = U0 * np.cos(phi_0) * np.sin(theta_0)
    wj = U0 * np.sin(phi_0)
    profile_fname = './crossflow_plume.nc'
    profile = get_profile(profile_fname, z0, D, uj, vj, wj, Tj, Sj, ua, T, F,
                          1., H)

    # Create a bent plume model simulation object
    jlm = bpm.Model(profile)

    # Define the dispersed phase input to the model
    composition = ['nitrogen', 'oxygen', 'argon', 'carbon_dioxide']
    mol_frac = np.array([0.78084, 0.20946, 0.009340, 0.00036])
    air = dbm.FluidParticle(composition)
    particles = []

    # Large bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.008
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(profile, z0, air, mol_frac, Q_N,
                                               1, de0, T0)
    particles.append(
        bpm.Particle(0.,
                     0.,
                     z0,
                     air,
                     m0,
                     T0,
                     nb0,
                     lambda_1,
                     P,
                     Sa,
                     Ta,
                     K=1.,
                     K_T=1.,
                     fdis=1.e-6))

    # Small bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.0003
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(profile, z0, air, mol_frac, Q_N,
                                               1, de0, T0)
    particles.append(
        bpm.Particle(0.,
                     0.,
                     z0,
                     air,
                     m0,
                     T0,
                     nb0,
                     lambda_1,
                     P,
                     Sa,
                     Ta,
                     K=1.,
                     K_T=1.,
                     fdis=1.e-6))

    # Run the simulation
    jlm.simulate(np.array([0., 0., z0]),
                 D,
                 U0,
                 phi_0,
                 theta_0,
                 Sj,
                 Tj,
                 cj,
                 chem_name,
                 particles,
                 track=True,
                 dt_max=60.,
                 sd_max=100.)

    # Perpare variables for plotting
    xp = jlm.q[:, 7] / jlm.D
    yp = jlm.q[:, 9] / jlm.D

    plt.figure(fig)
    plt.clf()
    plt.show()

    ax1 = plt.subplot(111)
    ax1.plot(xp, yp, 'b-')
    ax1.set_xlabel('x / D')
    ax1.set_ylabel('z / D')
    ax1.invert_yaxis()
    ax1.grid(b=True, which='major', color='0.65', linestyle='-')

    plt.draw()

    return jlm
Exemple #4
0
def particles(m_tot, d, vf, profile, oil, yk, x0, y0, z0, Tj, lambda_1,
              lag_time):
    """
    Create particles to add to a bent plume model simulation

    Creates bent_plume_model.Particle objects for the given particle
    properties so that they can be added to the total list of particles
    in the simulation.

    Parameters
    ----------
    m_tot : float
        Total mass flux of this fluid phase in the simulation (kg/s)
    d : np.array
        Array of particle sizes for this fluid phase (m)
    vf : np.array
        Array of volume fractions for each particle size for this fluid
        phase (--).  This array should sum to 1.0.
    profile : ambient.Profile
        An ambient.Profile object with the ambient ocean water column data
    oil : dbm.FluidParticle
        A dbm.FluidParticle object that contains the desired oil database
        composition
    yk : np.array
        Mole fractions of each compound in the chemical database of the oil
        dbm.FluidParticle object (--).
    x0, y0, z0 : floats
        Initial position of the particles in the simulation domain (m).  Note
        that x0 and y0 should be zero for particles starting on the plume
        centerline.
    Tj : float
        Initial temperature of the particles in the jet (K)
    lambda_1 : float
        Value of the dispersed phase spreading parameter of the jet integral
        model (--).
    lag_time : bool
        Flag that indicates whether (True) or not (False) to use the
        biodegradation lag times data.

    Returns
    -------
    disp_phases : list of bent_plume_model.Particle objects
        List of `bent_plume_model.Particle` objects to be added to the
        present bent plume model simulation based on the given input data.

    Notes
    -----
    See the documentation for the `bent_plume_model` for more
    information on the `Particle` object.

    """
    # Create an empty list of particles
    disp_phases = []

    # Add each particle in the distribution separately
    for i in range(len(d)):

        # Get the total mass flux of this fluid phase for the present
        # particle size
        mb0 = vf[i] * m_tot

        # Get the properties of these particles at the source
        (m0, T0, nb0, P, Sa,
         Ta) = dispersed_phases.initial_conditions(profile, z0, oil, yk, mb0,
                                                   2, d[i], Tj)

        # Append these particles to the list of particles in the simulation
        disp_phases.append(
            bent_plume_model.Particle(x0,
                                      y0,
                                      z0,
                                      oil,
                                      m0,
                                      T0,
                                      nb0,
                                      lambda_1,
                                      P,
                                      Sa,
                                      Ta,
                                      K=1.,
                                      K_T=1.,
                                      fdis=1.e-6,
                                      t_hyd=0.,
                                      lag_time=lag_time))

    # Return the list of particles
    return disp_phases
Exemple #5
0
    # Create the stratified plume model object
    bpm = bent_plume_model.Model(ctd)

    # Create the gas phase particles
    composition = ['methane', 'ethane', 'propane', 'oxygen']
    yk = np.array([0.93, 0.05, 0.02, 0.0])
    gas = dbm.FluidParticle(composition)
    disp_phases = []

    # Larger free gas bubbles
    mb0 = 5.  # total mass flux in kg/s
    de = 0.005  # bubble diameter in m
    lambda_1 = 0.85
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(ctd, z0, gas, yk, mb0, 2, de,
                                               Tj)
    disp_phases.append(
        bent_plume_model.Particle(0.,
                                  0.,
                                  z0,
                                  gas,
                                  m0,
                                  T0,
                                  nb0,
                                  lambda_1,
                                  P,
                                  Sa,
                                  Ta,
                                  K=1.,
                                  K_T=1.,
                                  fdis=1.e-6,
Exemple #6
0
def get_sim_data():
    """
    Create the data needed to initialize a simulation
    
    Performs the steps necessary to set up a bent plume model simulation
    and passes the input variables to the `Model` object and 
    `Model.simulate()` method.  
    
    Returns
    -------
    profile : `ambient.Profile` object
        Return a profile object from the BM54 CTD data
    z0 : float
        Depth of the release port (m)
    D : float
        Diameter of the release port (m)
    Vj : float
        Initial velocity of the jet (m/s)
    phi_0 : float
        Vertical angle from the horizontal for the discharge orientation 
        (rad in range +/- pi/2)
    theta_0 : float
        Horizontal angle from the x-axis for the discharge orientation.  
        The x-axis is taken in the direction of the ambient current.  
        (rad in range 0 to 2 pi)
    Sj : float
        Salinity of the continuous phase fluid in the discharge (psu)
    Tj : float
        Temperature of the continuous phase fluid in the discharge (T)
    cj : ndarray
        Concentration of passive tracers in the discharge (user-defined)
    tracers : string list
        List of passive tracers in the discharge.  These can be chemicals 
        present in the ambient `profile` data, and if so, entrainment of 
        these chemicals will change the concentrations computed for these 
        tracers.  However, none of these concentrations are used in the 
        dissolution of the dispersed phase.  Hence, `tracers` should not 
        contain any chemicals present in the dispersed phase particles.
    particles : list of `Particle` objects
        List of `Particle` objects describing each dispersed phase in the 
        simulation
    dt_max : float
        Maximum step size to take in the storage of the simulation 
        solution (s)
    sd_max : float
        Maximum number of orifice diameters to compute the solution along
        the plume centerline (m/m)
    
    """
    # Get the ambient CTD data
    profile = get_profile()
    
    # Specify the release location and geometry and initialize a particle
    # list
    z0 = 300.
    D = 0.3
    particles = []
    
    # Add a dissolving particle to the list
    composition = ['oxygen', 'nitrogen', 'argon']
    yk = np.array([1.0, 0., 0.])
    o2 = dbm.FluidParticle(composition)
    Q_N = 1.5 / 60. / 60. 
    de = 0.009
    lambda_1 = 0.85
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, o2, yk, Q_N, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, o2, m0, T0, 
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))
    
    # Add an insoluble particle to the list
    composition = ['inert']
    yk = np.array([1.])
    oil = dbm.InsolubleParticle(True, True)
    mb0 = 1.
    de = 0.01
    lambda_1 = 0.8
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, oil, yk, mb0, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, oil, m0, T0, 
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))
    
    # Set the other simulation parameters
    Vj = 0.
    phi_0 = -np.pi/2.
    theta_0 = 0.
    Sj = 0.
    Tj = Ta
    cj = np.array([1.])
    tracers = ['tracer']
    dt_max = 60.
    sd_max = 3000.
    
    # Return the results
    return (profile, np.array([0., 0., z0]), D, Vj, phi_0, theta_0, Sj, Tj, 
        cj, tracers, particles, dt_max, sd_max)
Exemple #7
0
 chem_name = 'tracer'
 
 # Create the stratified plume model object
 bpm = bent_plume_model.Model(ctd)
     
 # Create the gas phase particles
 composition = ['methane', 'ethane', 'propane', 'oxygen']
 yk = np.array([0.93, 0.05, 0.02, 0.0])
 gas = dbm.FluidParticle(composition)
 disp_phases = []
 
 # Larger free gas bubbles
 mb0 = 5.         # total mass flux in kg/s
 de = 0.005       # bubble diameter in m
 lambda_1 = 0.85
 (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
     ctd, z0, gas, yk, mb0, 2, de, Tj)
 disp_phases.append(bent_plume_model.Particle(0., 0., z0, gas, m0, T0, 
     nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.,
     lag_time=False))
 
 # Smaller free gas bubbles
 mb0 = 5.         # total mass flux in kg/s
 de = 0.0005       # bubble diameter in m
 lambda_1 = 0.95
 (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
     ctd, z0, gas, yk, mb0, 2, de, Tj)
 disp_phases.append(bent_plume_model.Particle(0., 0., z0, gas, m0, T0, 
     nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0., 
     lag_time=False))
 
 # Larger oil droplets
Exemple #8
0
def crossflow_plume(fig):
    """
    Define, run, and plot the simulations for a pure bubble plume in crossflow
    for validation to data in Socolofsky and Adams (2002).
    
    """
    # Jet initial conditions
    z0 = 0.64
    U0 = 0.
    phi_0 = - np.pi / 2.
    theta_0 = 0.
    D = 0.01
    Tj = 21. + 273.15
    Sj = 0.
    cj = 1.
    chem_name = 'tracer'
    
    # Ambient conditions
    ua = 0.15
    T = 0.
    F = 0.
    H = 1.0
    
    # Create the correct ambient profile data
    uj = U0 * np.cos(phi_0) * np.cos(theta_0)
    vj = U0 * np.cos(phi_0) * np.sin(theta_0)
    wj = U0 * np.sin(phi_0)
    profile_fname = './crossflow_plume.nc'
    profile = get_profile(profile_fname, z0, D, uj, vj, wj, 
              Tj, Sj, ua, T, F, 1., H)
    
    # Create a bent plume model simulation object
    jlm = bpm.Model(profile)
    
    # Define the dispersed phase input to the model
    composition = ['nitrogen', 'oxygen', 'argon', 'carbon_dioxide']
    mol_frac = np.array([0.78084, 0.20946, 0.009340, 0.00036])
    air = dbm.FluidParticle(composition)
    particles = []
    
    # Large bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.008
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, air, mol_frac, Q_N, 1, de0, T0)
    particles.append(bpm.Particle(0., 0., z0, air, m0, T0, nb0, lambda_1,
        P, Sa, Ta, K=1., K_T=1., fdis=1.e-6))
    
    # Small bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.0003
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, air, mol_frac, Q_N, 1, de0, T0)
    particles.append(bpm.Particle(0., 0., z0, air, m0, T0, nb0, lambda_1,
        P, Sa, Ta, K=1., K_T=1., fdis=1.e-6))
    
    # Run the simulation
    jlm.simulate(np.array([0., 0., z0]), D, U0, phi_0, theta_0,
        Sj, Tj, cj, chem_name, particles, track=True, dt_max=60., 
        sd_max = 100.)
    
    # Perpare variables for plotting
    xp = jlm.q[:,7] / jlm.D
    yp = jlm.q[:,9] / jlm.D
    
    plt.figure(fig)
    plt.clf()
    plt.show()
    
    ax1 = plt.subplot(111)
    ax1.plot(xp, yp, 'b-')
    ax1.set_xlabel('x / D')
    ax1.set_ylabel('z / D')
    ax1.invert_yaxis()
    ax1.grid(b=True, which='major', color='0.65', linestyle='-')
    
    plt.draw()
    
    return jlm
Exemple #9
0
def get_sim_data():
    """
    Create the data needed to initialize a simulation

    Performs the steps necessary to set up a bent plume model simulation
    and passes the input variables to the `Model` object and
    `Model.simulate()` method.

    Returns
    -------
    profile : `ambient.Profile` object
        Return a profile object from the BM54 CTD data
    z0 : float
        Depth of the release port (m)
    D : float
        Diameter of the release port (m)
    Vj : float
        Initial velocity of the jet (m/s)
    phi_0 : float
        Vertical angle from the horizontal for the discharge orientation
        (rad in range +/- pi/2)
    theta_0 : float
        Horizontal angle from the x-axis for the discharge orientation.
        The x-axis is taken in the direction of the ambient current.
        (rad in range 0 to 2 pi)
    Sj : float
        Salinity of the continuous phase fluid in the discharge (psu)
    Tj : float
        Temperature of the continuous phase fluid in the discharge (T)
    cj : ndarray
        Concentration of passive tracers in the discharge (user-defined)
    tracers : string list
        List of passive tracers in the discharge.  These can be chemicals
        present in the ambient `profile` data, and if so, entrainment of
        these chemicals will change the concentrations computed for these
        tracers.  However, none of these concentrations are used in the
        dissolution of the dispersed phase.  Hence, `tracers` should not
        contain any chemicals present in the dispersed phase particles.
    particles : list of `Particle` objects
        List of `Particle` objects describing each dispersed phase in the
        simulation
    dt_max : float
        Maximum step size to take in the storage of the simulation
        solution (s)
    sd_max : float
        Maximum number of orifice diameters to compute the solution along
        the plume centerline (m/m)

    """
    # Get the ambient CTD data
    profile = get_profile()

    # Specify the release location and geometry and initialize a particle
    # list
    z0 = 300.
    D = 0.3
    particles = []

    # Add a dissolving particle to the list
    composition = ['oxygen', 'nitrogen', 'argon']
    yk = np.array([1.0, 0., 0.])
    o2 = dbm.FluidParticle(composition)
    Q_N = 1.5 / 60. / 60.
    de = 0.009
    lambda_1 = 0.85
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, o2, yk, Q_N, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, o2, m0, T0,
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

    # Add an insoluble particle to the list
    composition = ['inert']
    yk = np.array([1.])
    oil = dbm.InsolubleParticle(True, True)
    mb0 = 1.
    de = 0.01
    lambda_1 = 0.8
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, oil, yk, mb0, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, oil, m0, T0,
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

    # Set the other simulation parameters
    Vj = 0.
    phi_0 = -np.pi/2.
    theta_0 = 0.
    Sj = 0.
    Tj = Ta
    cj = np.array([1.])
    tracers = ['tracer']
    dt_max = 60.
    sd_max = 3000.

    # Return the results
    return (profile, np.array([0., 0., z0]), D, Vj, phi_0, theta_0, Sj, Tj,
        cj, tracers, particles, dt_max, sd_max)
Exemple #10
0
def sbm_ic(profile, particle, X0, de, yk, T0, K, K_T, fdis, t_hyd, lag_time):
    """
    Set the initial conditions for a single bubble model simulation
    
    Set up the state space at the release point for the single bubble model
    simulation
    
    Parameters
    ----------
    profile : `ambient.Profile` object
        Ambient CTD data for the model simulation
    particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object
        Object describing the properties and behavior of the particle.
    X0 : ndarray
        The release location (x, y, y) in m of the particle in the simulation
    de : float
        Initial diameter of the particle (m)
    yk : ndarray
        Initial mole fractions of each component in the particle (--)
    T0 : float, optional
        Initial temperature (K) of the particle at release if not equal 
        to the temperature of the surrounding fluid.  If omitted, the 
        model will set T0 to the ambient temperature.
    K : float
        Mass transfer reduction factor (--). Pre-multiplies the mass 
        transfer coefficients providing amplification (>1) or retardation 
        (<1) of the dissolution.  
    K_T : float
        Heat transfer reduction factor (--). Pre-multiplies the heat 
        transfer coefficient providing amplification (>1) or retardation 
        (<1) of the heat flux.
    fdis : float
        Fraction of the initial total mass (--) remaining when the 
        particle should be considered dissolved.
    t_hyd : float
        Hydrate film formation time (s).  Mass transfer is computed by clean
        bubble methods for t less than t_hyd and by dirty bubble methods
        thereafter.  The default behavior is to assume the particle is dirty
        or hydrate covered from the release.
    
    Return
    ------
    particle : `LagrangianParticle` object
        A `LagrangianParticle` object containing a unified interface to the 
        `dbm` module and the particle-specific model parameters (e.g., mass 
        transfer reduction factor, etc.)
    y0 : ndarray
        Model state space at the release point.  Includes the current depth 
        (m), the masses (kg) of each component of the particle, and the 
        particle heat content (J)
    
    Notes
    -----
    This function converts an initial diameter and a list of mole fractions
    to the actual mass of each component in a particle.  This seems like 
    the most common method a single particle would be initialized.  Note, 
    however, that the user does not specify the mass: it is calculated in 
    this function.  If the same diameter particle is released as a deeper 
    depth, it will contain more mass (due to compressibility).  Likewise, 
    if the composition is changed while the depth and diameter are 
    maintained constant, the mass will change, altering the trajectory
    and simulation results.  If the mass is to be kept constant, this must
    be done outside this routine and the correct diameter calculated and
    passed to this function.
    
    """
    # Get the particle initial conditions from the dispersed_phases module
    m0, T0, nb0, P, Sa, Ta = dispersed_phases.initial_conditions(profile, 
        X0[2], particle, yk, None, 0, de, T0)
    
    # Initialize a LagrangianParticle object
    particle = dispersed_phases.SingleParticle(particle, m0, T0, K, K_T, 
               fdis, t_hyd, lag_time)
    
    # Assemble the state space
    y0 = np.hstack((X0, m0, T0 * np.sum(m0) * particle.cp))
    
    # Return the particle object and the state space
    return (particle, y0)