def discriminator(x):
     _ = x
     with O.argscope(O.fc, nonlin=O.tanh):
         _ = O.fc('fc1', _, 500)
     _ = O.fc('fc3', _, 1)
     logits = _
     return logits
Exemple #2
0
def make_network(env):
    with env.create_network() as net:

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                h, w, c = 28, 28, 1
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def forward(img):
                _ = img
                _ = O.conv2d('conv1',
                             _,
                             16, (3, 3),
                             padding='SAME',
                             nonlin=O.identity)
                _ = O.batch_norm('bn1', _)
                _ = O.relu(_)
                _ = O.pooling2d('pool1', _, kernel=2)
                _ = O.conv2d('conv2',
                             _,
                             32, (3, 3),
                             padding='SAME',
                             nonlin=O.identity)
                _ = O.batch_norm('bn2', _)
                _ = O.relu(_)
                _ = O.pooling2d('pool2', _, kernel=2)
                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc1', _, 64)
        _ = O.fc('fc2', _, 10)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(
                logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
 def phi_fc(feature):
     _ = feature
     _ = O.fc('fc0',
              _,
              512,
              nonlin=functools.partial(O.leaky_relu, alpha=0.01))
     q_pred = O.fc('fcq', _, get_player_nr_actions())
     q_max = q_pred.max(axis=1)
     q_argmax = q_pred.argmax(axis=1)
     return q_pred, q_max, q_argmax
Exemple #4
0
            def forward(x):
                _ = x
                _ = O.fc('fcp1', _, 512, nonlin=O.relu)
                _ = O.fc('fcp2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_p')

                _ = x
                _ = O.fc('fcv1', _, 512, nonlin=O.relu)
                _ = O.fc('fcv2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_v')
Exemple #5
0
def make_network(env):
    with env.create_network() as net:
        nr_classes = get_env('dataset.nr_classes')

        conv_bn_relu = functools.partial(O.conv2d, nonlin=O.bn_relu)
        conv2d = conv_bn_relu

        dpc = env.create_dpcontroller()
        with dpc.activate():
            def inputs():
                h, w, c = 32, 32, 3
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def forward(img):
                _ = img
                _ = conv2d('conv1.1', _, 16, (3, 3), padding='SAME')
                _ = conv2d('conv1.2', _, 16, (3, 3), padding='SAME')
                _ = O.pooling2d('pool1', _, kernel=3, stride=2)
                _ = conv2d('conv2.1', _, 32, (3, 3), padding='SAME')
                _ = conv2d('conv2.2', _, 32, (3, 3), padding='SAME')
                _ = O.pooling2d('pool2', _, kernel=3, stride=2)
                _ = conv2d('conv3.1', _, 64, (3, 3), padding='VALID')
                _ = conv2d('conv3.2', _, 64, (3, 3), padding='VALID')
                _ = conv2d('conv3.3', _, 64, (3, 3), padding='VALID')

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc1', _, 128, nonlin=O.relu)
        _ = O.fc('fc2', _, 64, nonlin=O.relu)
        _ = O.fc('linear', _, nr_classes)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
            def forward(img):
                g_batch_size = get_env('trainer.batch_size') if env.phase is env.Phase.TRAIN else 1
                z = O.as_varnode(tf.random_normal([g_batch_size, code_length]))
                with env.variable_scope(GANGraphKeys.GENERATOR_VARIABLES):
                    _ = z
                    with O.argscope(O.fc, nonlin=O.tanh):
                        _ = O.fc('fc1', _, 500)
                    _ = O.fc('fc3', _, 784, nonlin=O.sigmoid)
                    x_given_z = _.reshape(-1, 28, 28, 1)

                def discriminator(x):
                    _ = x
                    with O.argscope(O.fc, nonlin=O.tanh):
                        _ = O.fc('fc1', _, 500)
                    _ = O.fc('fc3', _, 1)
                    logits = _
                    return logits

                if is_train:
                    with env.variable_scope(GANGraphKeys.DISCRIMINATOR_VARIABLES):
                        logits_real = discriminator(img).flatten()
                        score_real = O.sigmoid(logits_real)

                with env.variable_scope(GANGraphKeys.DISCRIMINATOR_VARIABLES, reuse=is_train):
                    logits_fake = discriminator(x_given_z).flatten()
                    score_fake = O.sigmoid(logits_fake)

                if is_train:
                    # build loss
                    with env.variable_scope('loss'):
                        d_loss_real = O.sigmoid_cross_entropy_with_logits(
                            logits=logits_real, labels=O.ones_like(logits_real)).mean()
                        d_loss_fake = O.sigmoid_cross_entropy_with_logits(
                            logits=logits_fake, labels=O.zeros_like(logits_fake)).mean()
                        g_loss = O.sigmoid_cross_entropy_with_logits(
                            logits=logits_fake, labels=O.ones_like(logits_fake)).mean()

                    d_acc_real = (score_real > 0.5).astype('float32').mean()
                    d_acc_fake = (score_fake < 0.5).astype('float32').mean()
                    g_accuracy = (score_fake > 0.5).astype('float32').mean()

                    d_accuracy = .5 * (d_acc_real + d_acc_fake)
                    d_loss = .5 * (d_loss_real + d_loss_fake)

                    dpc.add_output(d_loss, name='d_loss', reduce_method='sum')
                    dpc.add_output(d_accuracy, name='d_accuracy', reduce_method='sum')
                    dpc.add_output(d_acc_real, name='d_acc_real', reduce_method='sum')
                    dpc.add_output(d_acc_fake, name='d_acc_fake', reduce_method='sum')
                    dpc.add_output(g_loss, name='g_loss', reduce_method='sum')
                    dpc.add_output(g_accuracy, name='g_accuracy', reduce_method='sum')

                dpc.add_output(x_given_z, name='output')
                dpc.add_output(score_fake, name='score')
Exemple #7
0
            def generator(z):
                w_init = O.truncated_normal_initializer(stddev=0.02)
                with O.argscope(O.conv2d, O.deconv2d, kernel=4, stride=2, W=w_init),\
                     O.argscope(O.fc, W=w_init):

                    _ = z
                    _ = O.fc('fc1', _, 1024, nonlin=O.bn_relu)
                    _ = O.fc('fc2', _, 128 * 7 * 7, nonlin=O.bn_relu)
                    _ = O.reshape(_, [-1, 7, 7, 128])
                    _ = O.deconv2d('deconv1', _, 64, nonlin=O.bn_relu)
                    _ = O.deconv2d('deconv2', _, 1)
                    _ = O.sigmoid(_, 'out')
                return _
Exemple #8
0
            def discriminator(img):
                w_init = O.truncated_normal_initializer(stddev=0.02)
                with O.argscope(O.conv2d, O.deconv2d, kernel=4, stride=2, W=w_init),\
                     O.argscope(O.fc, W=w_init),\
                     O.argscope(O.leaky_relu, alpha=0.2):

                    _ = img
                    _ = O.conv2d('conv1', _, 64, nonlin=O.leaky_relu)
                    _ = O.conv2d('conv2', _, 128, nonlin=O.bn_nonlin)
                    _ = O.leaky_relu(_)
                    _ = O.fc('fc1', _, 1024, nonlin=O.bn_nonlin)
                    _ = O.leaky_relu(_)
                    _ = O.fc('fct', _, 1)
                return _
 def discriminator(x, name, reuse):
     with env.variable_scope(GANGraphKeys.DISCRIMINATOR_VARIABLES,
                             reuse=reuse):
         with env.variable_scope(name):
             z = encoder(x, nonlin=bn_leaky_relu)
             logit = O.fc('fccls', z, 1)
     return logit
Exemple #10
0
            def discriminator(img):
                w_init = O.truncated_normal_initializer(stddev=0.02)
                with O.argscope(O.conv2d, O.deconv2d, kernel=4, stride=2, W=w_init),\
                     O.argscope(O.fc, W=w_init),\
                     O.argscope(O.leaky_relu, alpha=0.2):

                    _ = img
                    _ = O.conv2d('conv1', _, 64, nonlin=O.leaky_relu)
                    _ = O.conv2d('conv2', _, 128, nonlin=O.bn_nonlin)
                    _ = O.leaky_relu(_)
                    _ = O.fc('fc1', _, 1024, nonlin=O.bn_nonlin)
                    _ = O.leaky_relu(_)

                    with env.variable_scope('score'):
                        logits = O.fc('fct', _, 1)

                    with env.variable_scope('code'):
                        _ = O.fc('fc1', _, 128, nonlin=O.bn_nonlin)
                        _ = O.leaky_relu(_)
                        code = O.fc('fc2', _, zc_distrib.param_size)

                return logits, code
Exemple #11
0
            def forward(img):
                _ = img
                _ = O.conv2d('conv1',
                             _,
                             4, (3, 3),
                             stride=2,
                             padding='SAME',
                             nonlin=O.relu)
                # shape = (14, 14)
                _ = O.conv2d('conv2',
                             _,
                             8, (3, 3),
                             stride=2,
                             padding='SAME',
                             nonlin=O.relu)
                # shape = (7, 7)
                _ = O.fc('fc', _, 392)
                _ = _.reshape([-1, 7, 7, 8])
                _ = O.deconv2d('deconv1',
                               _,
                               4, (3, 3),
                               stride=2,
                               padding='SAME',
                               nonlin=O.relu)
                # shape = (14, 14)
                _ = O.deconv2d('deconv2',
                               _,
                               1, (3, 3),
                               stride=2,
                               padding='SAME',
                               nonlin=O.sigmoid)
                # shape = (28, 28)
                out = _

                loss = O.raw_cross_entropy_prob('raw_loss', out, img)
                loss = O.get_pn_balanced_loss('loss', loss, img)
                dpc.add_output(out, name='output')
                dpc.add_output(loss, name='loss', reduce_method='sum')
            def forward(x):
                if is_reconstruct or env.phase is env.Phase.TRAIN:
                    with env.variable_scope('encoder'):
                        _ = x
                        _ = O.fc('fc1', _, 500, nonlin=O.tanh)
                        _ = O.fc('fc2', _, 500, nonlin=O.tanh)
                        mu = O.fc('fc3_mu', _, code_length)
                        log_var = O.fc('fc3_sigma', _, code_length)
                        var = O.exp(log_var)
                        std = O.sqrt(var)
                        epsilon = O.random_normal([x.shape[0], code_length])
                        z_given_x = mu + std * epsilon
                else:
                    z_given_x = O.random_normal([1, code_length])

                with env.variable_scope('decoder'):
                    _ = z_given_x
                    _ = O.fc('fc1', _, 500, nonlin=O.tanh)
                    _ = O.fc('fc2', _, 500, nonlin=O.tanh)
                    _ = O.fc('fc3', _, 784, nonlin=O.sigmoid)
                    _ = _.reshape(-1, h, w, c)
                    x_given_z = _

                if env.phase is env.Phase.TRAIN:
                    with env.variable_scope('loss'):
                        content_loss = O.raw_cross_entropy_prob(
                            'raw_content', x_given_z.flatten2(), x.flatten2())
                        content_loss = content_loss.sum(axis=1).mean(
                            name='content')
                        # distrib_loss = 0.5 * (O.sqr(mu) + O.sqr(std) - 2. * O.log(std + 1e-8) - 1.0).sum(axis=1)
                        distrib_loss = -0.5 * (1. + log_var - O.sqr(mu) -
                                               var).sum(axis=1)
                        distrib_loss = distrib_loss.mean(name='distrib')

                        loss = content_loss + distrib_loss
                    dpc.add_output(loss, name='loss', reduce_method='sum')

                dpc.add_output(x_given_z, name='output')
Exemple #13
0
def make_network(env):
    is_train = env.phase is env.Phase.TRAIN
    if is_train:
        slave_devices = env.slave_devices
        env.set_slave_devices([])

    with env.create_network() as net:
        h, w, c = get_input_shape()

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                state = O.placeholder('state', shape=(None, h, w, c))
                return [state]

            def forward(x):
                _ = x / 255.0
                with O.argscope(O.conv2d, nonlin=O.relu):
                    _ = O.conv2d('conv0', _, 32, 5)
                    _ = O.max_pooling2d('pool0', _, 2)
                    _ = O.conv2d('conv1', _, 32, 5)
                    _ = O.max_pooling2d('pool1', _, 2)
                    _ = O.conv2d('conv2', _, 64, 4)
                    _ = O.max_pooling2d('pool2', _, 2)
                    _ = O.conv2d('conv3', _, 64, 3)

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc0', _, 512, nonlin=O.p_relu)
        policy = O.fc('fc_policy', _, get_player_nr_actions())
        value = O.fc('fc_value', _, 1)

        expf = O.scalar('explore_factor', 1, trainable=False)
        policy_explore = O.softmax(policy * expf, name='policy_explore')

        policy = O.softmax(policy, name='policy')
        value = value.remove_axis(1, name='value')

        net.add_output(policy_explore, name='policy_explore')
        net.add_output(policy, name='policy')
        net.add_output(value, name='value')

        if is_train:
            action = O.placeholder('action', shape=(None, ), dtype='int64')
            future_reward = O.placeholder('future_reward', shape=(None, ))

            log_policy = O.log(policy + 1e-6)
            log_pi_a_given_s = (
                log_policy *
                O.one_hot(action, get_player_nr_actions())).sum(axis=1)
            advantage = (future_reward -
                         O.zero_grad(value)).rename('advantage')
            policy_cost = (log_pi_a_given_s *
                           advantage).mean(name='policy_cost')
            xentropy_cost = (-policy *
                             log_policy).sum(axis=1).mean(name='xentropy_cost')
            value_loss = O.raw_l2_loss('raw_value_loss', future_reward,
                                       value).mean(name='value_loss')
            entropy_beta = O.scalar('entropy_beta', 0.01, trainable=False)
            loss = O.add_n(
                [-policy_cost, -xentropy_cost * entropy_beta, value_loss],
                name='loss')

            net.set_loss(loss)

            for v in [
                    policy_cost, xentropy_cost, value_loss,
                    value.mean(name='predict_value'),
                    advantage.rms(name='rms_advantage'), loss
            ]:
                summary.scalar(v)

    if is_train:
        env.set_slave_devices(slave_devices)
Exemple #14
0
            def forward(img=None):
                encoder = O.BasicLSTMCell(256)
                decoder = O.BasicLSTMCell(256)

                batch_size = img.shape[0] if is_train else 1

                canvas = O.zeros(shape=O.canonize_sym_shape([batch_size, h, w, c]), dtype='float32')
                enc_state = encoder.zero_state(batch_size, dtype='float32')
                dec_state = decoder.zero_state(batch_size, dtype='float32')
                enc_h, dec_h = enc_state[1], dec_state[1]

                def encode(x, state, reuse):
                    with env.variable_scope('read_encoder', reuse=reuse):
                        return encoder(x, state)

                def decode(x, state, reuse):
                    with env.variable_scope('write_decoder', reuse=reuse):
                        return decoder(x, state)

                all_sqr_mus, all_vars, all_log_vars = 0., 0., 0.

                for step in range(nr_glimpse):
                    reuse = (step != 0)
                    if is_reconstruct or env.phase is env.Phase.TRAIN:
                        img_hat = draw_opr.image_diff(img, canvas)  # eq. 3

                        # Note: here the input should be dec_h
                        with env.variable_scope('read', reuse=reuse):
                            read_param = O.fc('fc_param', dec_h, 5)

                        with env.name_scope('read_step{}'.format(step)):
                            cx, cy, delta, var, gamma = draw_opr.split_att_params(h, w, att_dim, read_param)
                            read_inp = O.concat([img, img_hat], axis=3)  # of shape: batch_size x h x w x (2c)
                            read_out = draw_opr.att_read(att_dim, read_inp, cx, cy, delta, var)  # eq. 4
                            enc_inp = O.concat([gamma * read_out.flatten2(), dec_h], axis=1)
                        enc_h, enc_state = encode(enc_inp, enc_state, reuse)  # eq. 5

                        with env.variable_scope('sample', reuse=reuse):
                            _ = enc_h
                            sample_mu = O.fc('fc_mu', _, code_length)
                            sample_log_var = O.fc('fc_sigma', _, code_length)

                        with env.name_scope('sample_step{}'.format(step)):
                            sample_var = O.exp(sample_log_var)
                            sample_std = O.sqrt(sample_var)
                            sample_epsilon = O.random_normal([batch_size, code_length])
                            z = sample_mu + sample_std * sample_epsilon  # eq. 6

                        # accumulate for losses
                        all_sqr_mus += sample_mu ** 2.
                        all_vars += sample_var
                        all_log_vars += sample_log_var
                    else:
                        z = O.random_normal([1, code_length])

                    # z = O.callback_injector(z)

                    dec_h, dec_state = decode(z, dec_state, reuse)  # eq. 7
                    with env.variable_scope('write', reuse=reuse):
                        write_param = O.fc('fc_param', dec_h, 5)
                        write_in = O.fc('fc', dec_h, (att_dim * att_dim * c)).reshape(-1, att_dim, att_dim, c)

                    with env.name_scope('write_step{}'.format(step)):
                        cx, cy, delta, var, gamma = draw_opr.split_att_params(h, w, att_dim, write_param)
                        write_out = draw_opr.att_write(h, w, write_in, cx, cy, delta, var)  # eq. 8

                    canvas += write_out

                    if env.phase is env.Phase.TEST:
                        dpc.add_output(O.sigmoid(canvas), name='canvas_step{}'.format(step))

                canvas = O.sigmoid(canvas)

                if env.phase is env.Phase.TRAIN:
                    with env.variable_scope('loss'):
                        img, canvas = img.flatten2(), canvas.flatten2()
                        content_loss = O.raw_cross_entropy_prob('raw_content', canvas, img)
                        content_loss = content_loss.sum(axis=1).mean(name='content')
                        # distrib_loss = 0.5 * (O.sqr(mu) + O.sqr(std) - 2. * O.log(std + 1e-8) - 1.0).sum(axis=1)
                        distrib_loss = -0.5 * (float(nr_glimpse) + all_log_vars - all_sqr_mus - all_vars).sum(axis=1)
                        distrib_loss = distrib_loss.mean(name='distrib')

                        summary.scalar('content_loss', content_loss)
                        summary.scalar('distrib_loss', distrib_loss)

                        loss = content_loss + distrib_loss
                    dpc.add_output(loss, name='loss', reduce_method='sum')

                dpc.add_output(canvas, name='output')
Exemple #15
0
 def forward_fc(feature, action):
     action = O.one_hot(action, get_player_nr_actions())
     _ = O.concat([feature.flatten2(), action], axis=1)
     _ = O.fc('fc0', _, 512, nonlin=O.p_relu)
     reward = O.fc('fc_reward', _, 1)
     return reward
def make_network(env):
    with env.create_network() as net:
        state = O.placeholder('state', shape=(None, ) + get_input_shape())
        logits = O.fc('fc', state, get_action_shape())
        net.add_output(logits, name='policy')
Exemple #17
0
def make_network(env):
    use_linear_vr = get_env('trpo.use_linear_vr')

    with env.create_network() as net:
        net.dist = O.distrib.GaussianDistribution('policy',
                                                  size=get_action_shape()[0],
                                                  fixed_std=False)
        if use_linear_vr:
            from tartist.app.rl.utils.math import LinearValueRegressor
            net.value_regressor = LinearValueRegressor()

        state = O.placeholder('state', shape=(None, ) + get_input_shape())
        # state = O.moving_average(state)
        # state = O.clip_by_value(state, -10, 10)
        batch_size = state.shape[0]

        # We have to define variable scope here for later optimization.

        with env.variable_scope('policy'):
            _ = state

            with O.argscope(O.fc):
                _ = O.fc('fc1', _, 64, nonlin=O.relu)
                _ = O.fc('fc2', _, 64, nonlin=O.relu)
                mu = O.fc('fc_mu', _, net.dist.sample_size, nonlin=O.tanh)
                logstd = O.variable(
                    'logstd',
                    O.truncated_normal_initializer(stddev=0.01),
                    shape=(net.dist.sample_size, ),
                    trainable=True)

            logstd = O.tile(logstd.add_axis(0), [batch_size, 1])
            theta = O.concat([mu, logstd], axis=1)

            policy = net.dist.sample(batch_size=batch_size,
                                     theta=theta,
                                     process_theta=True)
            policy = O.clip_by_value(policy, -1, 1)

            net.add_output(theta, name='theta')
            net.add_output(policy, name='policy')

        if env.phase == env.Phase.TRAIN:
            theta_old = O.placeholder('theta_old',
                                      shape=(None, net.dist.param_size))
            action = O.placeholder('action',
                                   shape=(None, net.dist.sample_size))
            advantage = O.placeholder('advantage', shape=(None, ))

            log_prob = net.dist.log_likelihood(action,
                                               theta,
                                               process_theta=True)
            log_prob_old = net.dist.log_likelihood(action,
                                                   theta_old,
                                                   process_theta=True)

            # Importance sampling of surrogate loss (L in paper).
            ratio = O.exp(log_prob - log_prob_old)
            policy_loss = -O.reduce_mean(ratio * advantage)

            kl = net.dist.kl(theta_p=theta_old,
                             theta_q=theta,
                             process_theta=True).mean()
            kl_self = net.dist.kl(theta_p=O.zero_grad(theta),
                                  theta_q=theta,
                                  process_theta=True).mean()
            entropy = net.dist.entropy(theta, process_theta=True).mean()

            net.add_output(policy_loss, name='policy_loss')
            net.add_output(kl, name='kl')
            net.add_output(kl_self, name='kl_self')

            summary.scalar('policy_entropy',
                           entropy,
                           collections=[rl.train.ACGraphKeys.POLICY_SUMMARIES])

        if not use_linear_vr:
            with env.variable_scope('value'):
                value = O.fc('fcv', state, 1)
                net.add_output(value, name='value')

            if env.phase == env.Phase.TRAIN:
                value_label = O.placeholder('value_label', shape=(None, ))
                value_loss = O.raw_l2_loss('raw_value_loss', value,
                                           value_label).mean(name='value_loss')
                net.add_output(value_loss, name='value_loss')
Exemple #18
0
def make_network(env):
    with env.create_network() as net:
        n = 2
        nr_classes = get_env('dataset.nr_classes')

        conv2d = functools.partial(O.conv2d,
                                   kernel=3,
                                   use_bias=False,
                                   padding='SAME')
        conv_bn_relu = functools.partial(conv2d, nonlin=O.bn_relu)

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                h, w, c = 32, 32, 3
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def residual(name, x, first=False, inc_dim=False):
                in_channel = x.static_shape[3]
                out_channel = in_channel
                stride = 1
                if inc_dim:
                    out_channel = in_channel * 2
                    stride = 2
                with env.variable_scope(name):
                    _ = x if first else O.bn_relu(x)
                    _ = conv_bn_relu('conv1', _, out_channel, stride=stride)
                    _ = conv2d('conv2', _, out_channel)
                    if inc_dim:
                        x = O.pooling2d('pool', x, kernel=2)
                        x = O.pad(x, [[0, 0], [0, 0], [0, 0],
                                      [in_channel // 2, in_channel // 2]])
                print(name, x.static_shape)
                _ = _ + x
                return _

            def forward(img):
                _ = img / 128.0 - 1.0
                _ = conv_bn_relu('conv0', _, 16)
                _ = residual('res1.0', _, first=True)
                for i in range(1, n):
                    _ = residual('res1.{}'.format(i), _)
                _ = residual('res2.0', _, inc_dim=True)
                for i in range(1, n):
                    _ = residual('res2.{}'.format(i), _)
                _ = residual('res3.0', _, inc_dim=True)
                for i in range(1, n):
                    _ = residual('res3.{}'.format(i), _)

                _ = O.batch_norm('bn_last', _)
                _ = O.relu(_)

                _ = _.mean(axis=[1, 2])  # global avg pool

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('linear', _, nr_classes)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(
                logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
Exemple #19
0
def make_network(env):
    is_train = env.phase is env.Phase.TRAIN

    # device control: always use master device only for training session
    if is_train:
        slave_devices = env.slave_devices
        env.set_slave_devices([])
    
    with env.create_network() as net:
        input_length, = get_input_shape()
        action_length, = get_action_shape()

        dpc = env.create_dpcontroller()
        with dpc.activate():
            def inputs():
                state = O.placeholder('state', shape=(None, input_length))
                return [state]

            # forward policy network and value network separately (actor-critic)
            def forward(x):
                _ = x
                _ = O.fc('fcp1', _, 512, nonlin=O.relu)
                _ = O.fc('fcp2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_p')

                _ = x
                _ = O.fc('fcv1', _, 512, nonlin=O.relu)
                _ = O.fc('fcv2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_v')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature_p']
        # mu and std, assuming spherical covariance
        policy_mu = O.fc('fc_policy_mu', _, action_length)

        # In this example, we do not use variance. instead, we use fixed value.
        # policy_var = O.fc('fc_policy_var', _, 1, nonlin=O.softplus)
        # policy_var = O.tile(policy_var, [1, action_length], name='policy_var')
        # policy_std = O.sqrt(policy_var, name='policy_std')

        actor_space = get_env('a3c.actor_space')
        nr_bins = actor_space.shape[1]

        # Instead of using normal distribution, we use Laplacian distribution for policy.
        # And also, we are sampling from a truncated Laplacian distribution (only care the value in the
        # action space). To simplify the computation, we discretize the action space.
        actor_space = O.constant(actor_space)
        actor_space = O.tile(actor_space.add_axis(0), [policy_mu.shape[0], 1, 1])
        policy_mu3 = O.tile(policy_mu.add_axis(2), [1, 1, nr_bins])

        # policy_std3 = O.tile(policy_std.add_axis(2), [1, 1, nr_bins])
        # logits = O.abs(actor_space - policy_mu3) / (policy_std3 + 1e-2)

        # Here, we force the std of the policy to be 1.
        logits_explore = -O.abs(actor_space - policy_mu3)
        policy_explore = O.softmax(logits_explore)

        # Clip the policy for output
        action_range = get_action_range()
        action_range = tuple(map(O.constant, action_range))
        action_range = tuple(map(lambda x: O.tile(x.add_axis(0), [policy_mu.shape[0], 1]), action_range))
        policy_output = O.clip_by_value(policy_mu, *action_range)

        _ = dpc.outputs['feature_v']
        value = O.fc('fc_value', _, 1)
        value = value.remove_axis(1, name='value')

        # Note that, here the policy_explore is a discrete policy,
        # and policy is actually the continuous one.
        net.add_output(policy_explore, name='policy_explore')
        net.add_output(policy_output, name='policy')
        net.add_output(value, name='value')

        if is_train:
            action = O.placeholder('action', shape=(None, action_length), dtype='int64')
            future_reward = O.placeholder('future_reward', shape=(None, ))
            entropy_beta = O.scalar('entropy_beta', 0.1, trainable=False)

            # Since we discretized the action space, use cross entropy here.
            log_policy = O.log(policy_explore + 1e-4)
            log_pi_a_given_s = (log_policy * O.one_hot(action, nr_bins)).sum(axis=2).sum(axis=1)
            advantage = (future_reward - O.zero_grad(value)).rename('advantage')

            # Important trick: using only positive advantage to perform gradient assent. This stabilizes the training.
            advantage = advantage * O.zero_grad((advantage > 0.).astype('float32'))
            policy_loss = O.identity(-(log_pi_a_given_s * advantage).mean(), name='policy_loss')

            # As mentioned, there is no trainable variance.
            # entropy_loss = O.identity(-entropy_beta * (policy_std ** 2.).sum(axis=1).mean(), name='entropy_loss')

            value_loss = O.raw_smooth_l1_loss('raw_value_loss', future_reward, value).mean(name='value_loss')

            loss = O.add_n([policy_cost, value_loss], name='loss')

            net.set_loss(loss)

            for v in [policy_cost, value_loss,
                      value.mean(name='predict_value'), advantage.rms(name='rms_advantage'), loss]:
                summary.scalar(v)

    if is_train:
        env.set_slave_devices(slave_devices)
def make_network(env):
    with env.create_network() as net:
        net.dist = O.distrib.GaussianDistribution('policy',
                                                  size=get_action_shape()[0],
                                                  fixed_std=False)

        state = O.placeholder('state', shape=(None, ) + get_input_shape())
        batch_size = state.shape[0]

        # We have to define variable scope here for later optimization.

        with env.variable_scope('policy'):
            _ = state

            _ = O.fc('fc1', _, 64, nonlin=O.relu)
            _ = O.fc('fc2', _, 64, nonlin=O.relu)
            mu = O.fc('fc_mu', _, net.dist.sample_size, nonlin=O.tanh)
            logstd = O.variable('logstd',
                                O.truncated_normal_initializer(stddev=0.01),
                                shape=(net.dist.sample_size, ),
                                trainable=True)

            logstd = O.tile(logstd.add_axis(0), [batch_size, 1])
            theta = O.concat([mu, logstd], axis=1)

            policy = net.dist.sample(batch_size=batch_size,
                                     theta=theta,
                                     process_theta=True)
            policy = O.clip_by_value(policy, -1, 1)

            net.add_output(theta, name='theta')
            net.add_output(policy, name='policy')

        if env.phase == env.Phase.TRAIN:
            theta_old = O.placeholder('theta_old',
                                      shape=(None, net.dist.param_size))
            action = O.placeholder('action',
                                   shape=(None, net.dist.sample_size))
            advantage = O.placeholder('advantage', shape=(None, ))
            entropy_beta = O.scalar('entropy_beta', g.entropy_beta)

            log_prob = net.dist.log_likelihood(action,
                                               theta,
                                               process_theta=True)
            log_prob_old = net.dist.log_likelihood(action,
                                                   theta_old,
                                                   process_theta=True)

            ratio = O.exp(log_prob - log_prob_old)
            epsilon = get_env('ppo.epsilon')
            surr1 = ratio * advantage  # surrogate from conservative policy iteration
            surr2 = O.clip_by_value(ratio, 1.0 - epsilon,
                                    1.0 + epsilon) * advantage
            policy_loss = -O.reduce_mean(O.min(
                surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
            entropy = net.dist.entropy(theta, process_theta=True).mean()
            entropy_loss = -entropy_beta * entropy

            net.add_output(policy_loss, name='policy_loss')
            net.add_output(entropy_loss, name='entropy_loss')

            summary.scalar('policy_entropy', entropy)

        with env.variable_scope('value'):
            _ = state
            _ = O.fc('fc1', _, 64, nonlin=O.relu)
            _ = O.fc('fc2', _, 64, nonlin=O.relu)
            value = O.fc('fcv', _, 1)
            value = value.remove_axis(1)
            net.add_output(value, name='value')

        if env.phase == env.Phase.TRAIN:
            value_label = O.placeholder('value_label', shape=(None, ))
            value_old = O.placeholder('value_old', shape=(None, ))

            value_surr1 = O.raw_l2_loss('raw_value_loss_surr1', value,
                                        value_label)
            value_clipped = value_old + O.clip_by_value(
                value - value_old, -epsilon, epsilon)
            value_surr2 = O.raw_l2_loss('raw_value_loss_surr2', value_clipped,
                                        value_label)
            value_loss = O.reduce_mean(O.max(value_surr1, value_surr2))
            net.add_output(value_loss, name='value_loss')

        if env.phase == env.Phase.TRAIN:
            loss = O.identity(policy_loss + entropy_loss + value_loss,
                              name='total_loss')
            net.set_loss(loss)