def setUp(self):
     super(SmallNORBTestLighting, self).setUp(
         data_wrapper=smallnorb.SmallNORBData("label_lighting"),
         num_classes=6,
         expected_num_samples=dict(
             train=24300,
             val=12150,
             trainval=36450,
             test=12150,
         ),
         required_tensors_shapes={
             "image": (96, 96, 3),
             "label": (),
         },
         tfds_label_key_map="label_lighting")
 def setUp(self):
   super(SmallNORBTestAzimuth, self).setUp(
       data_wrapper=smallnorb.SmallNORBData("label_azimuth"),
       num_classes=18,
       expected_num_samples=dict(
           train=24300,
           val=12150,
           trainval=36450,
           test=12150,
           train800val200=1000,
           train800=800,
           val200=200,
       ),
       required_tensors_shapes={
           "image": (96, 96, 3),
           "label": (),
       },
       tfds_label_key_map="label_azimuth")
 def test_incorrect_classes(self):
     with self.assertRaisesWithLiteralMatch(
             ValueError,
             "invalid_attribute is not a valid attribute to predict."):
         smallnorb.SmallNORBData("invalid_attribute")