Exemple #1
0
def main():
    args = arg_parser.parse_args()
    config_name = args.config.split("/")[-1].split(".")[0]

    with open(args.log_config) as log_config_f:
        log_filename = "logs/%s.log" % config_name
        log_config = yaml.load(log_config_f)
        log_config["handlers"]["fileHandler"]["filename"] = log_filename
        logging.config.dictConfig(log_config)

    with open(args.config) as config_f:
        config = util.Struct(**yaml.load(config_f))

    task = tasks.load_task(config.task)
    model = models.build_model(config.model, config.opt)

    for i_iter in range(config.opt.iters):
        do_eval = i_iter % 5 == 0
        train_loss, train_acc = batched_iter(
                task.train, model, config, train=True, compute_eval=do_eval)
        if do_eval:
            val_loss, val_acc = batched_iter(
                    task.val, model, config, compute_eval=True)
            visualizer.begin(config_name, 100)
            test_loss, test_acc = batched_iter(
                    task.test, model, config, compute_eval=True)
            visualizer.end()
            logging.info("%5d  :  %2.4f  %2.4f  %2.4f  :  %2.4f  %2.4f  %2.4f",
                    i_iter, train_loss, val_loss, test_loss, train_acc, val_acc, 
                    test_acc)
            model.save("saves/%s_%d.caffemodel" % (config_name, i_iter))
        else:
            logging.info("%5d  :  %2.4f", i_iter, train_loss)
Exemple #2
0
def main():
    config = configure()
    task = tasks.load_task(config)
    model = models.build_model(config.model, config.opt)

    for i_epoch in range(config.opt.iters):

        train_loss, train_acc, _ = \
                do_iter(task.train, model, config, train=True)
        val_loss, val_acc, val_predictions = \
                do_iter(task.val, model, config, vis=True)
        test_loss, test_acc, test_predictions = \
                do_iter(task.test, model, config)

        logging.info("%5d  |  %8.3f  %8.3f  %8.3f  |  %8.3f  %8.3f  %8.3f",
                     i_epoch, train_loss, val_loss, test_loss, train_acc,
                     val_acc, test_acc)

        with open("logs/val_predictions_%d.json" % i_epoch, "w") as pred_f:
            print >> pred_f, json.dumps(val_predictions)
Exemple #3
0
def main():
    config = configure()
    task = tasks.load_task(config)
    model = models.build_model(config.model, config.opt)

    for i_epoch in range(config.opt.iters):

        train_loss, train_acc, _ = do_iter(task.train, model, config, train=True)
        val_loss, val_acc, val_predictions = do_iter(task.val, model, config, vis=True)
        test_loss, test_acc, test_predictions = do_iter(task.test, model, config)

        logging.info(
            "%5d  |  %8.3f  %8.3f  %8.3f  |  %8.3f  %8.3f  %8.3f",
            i_epoch,
            train_loss,
            val_loss,
            test_loss,
            train_acc,
            val_acc,
            test_acc,
        )

        with open("logs/val_predictions_%d.json" % i_epoch, "w") as pred_f:
            print >> pred_f, json.dumps(val_predictions)