Exemple #1
0
def test(args):
    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    exp_dir = utils.get_path_from_args(
        args) if not args.output_dir else args.output_dir
    path = "{}/results/{}".format(code_root, exp_dir)
    assert os.path.isdir(path)
    task_family_test = tasks_sine.RegressionTasksSinusoidal(
        "test", args.skew_task_distribution)
    best_valid_model = utils.load_obj(os.path.join(path,
                                                   "logs")).best_valid_model
    k_shots = [5, 10, 20, 40]
    df = []
    for k_shot in k_shots:
        losses = np.array(
            eval(
                args,
                copy.copy(best_valid_model),
                task_family=task_family_test,
                num_updates=10,
                lr_inner=0.01,
                n_tasks=1000,
                k_shot=k_shot,
            ))
        for grad_step, task_losses in enumerate(losses.T, 1):
            new_rows = [[k_shot, grad_step, tl] for tl in task_losses]
            df.extend(new_rows)

    df = pd.DataFrame(df, columns=["k_shot", "grad_steps", "loss"])
    df.to_pickle(os.path.join(path, "res.pkl"))
    utils.plot_df(df, path)
Exemple #2
0
def run(args, log_interval=5000, rerun=False):

    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    exp_dir = utils.get_path_from_args(
        args) if not args.output_dir else args.output_dir
    path = "{}/results/{}".format(code_root, exp_dir)
    if not os.path.isdir(path):
        os.makedirs(path)

    if os.path.exists(os.path.join(path, "logs.pkl")) and not rerun:
        return utils.load_obj(os.path.join(path, "logs"))

    start_time = time.time()

    # correctly seed everything
    utils.set_seed(args.seed)

    # --- initialise everything ---
    task_family_train = tasks_sine.RegressionTasksSinusoidal(
        "train", args.skew_task_distribution)
    task_family_valid = tasks_sine.RegressionTasksSinusoidal(
        "valid", args.skew_task_distribution)

    # initialise network
    model_inner = MamlModel(
        task_family_train.num_inputs,
        task_family_train.num_outputs,
        n_weights=args.num_hidden_layers,
        device=args.device,
    ).to(args.device)
    model_outer = copy.deepcopy(model_inner)
    if args.detector == "minimax":
        task_sampler = TaskSampler(
            task_family_train.atoms //
            (2 if args.skew_task_distribution else 1)).to(args.device)
    elif args.detector == "neyman-pearson":
        constrainer = Constrainer(
            task_family_train.atoms //
            (2 if args.skew_task_distribution else 1)).to(args.device)

    # intitialise meta-optimiser
    meta_optimiser = optim.Adam(model_outer.weights + model_outer.biases,
                                args.lr_meta)

    # initialise loggers
    logger = Logger()
    logger.best_valid_model = copy.deepcopy(model_outer)

    for i_iter in range(args.n_iter):

        # copy weights of network
        copy_weights = [w.clone() for w in model_outer.weights]
        copy_biases = [b.clone() for b in model_outer.biases]

        # get all shared parameters and initialise cumulative gradient
        meta_gradient = [
            0 for _ in range(
                len(copy_weights + copy_biases) +
                (2 if args.detector != "bayes" else 0))
        ]

        # sample tasks
        if args.detector == "minimax":
            task_idxs, task_probs = task_sampler(args.tasks_per_metaupdate)
        elif args.detector == "neyman-pearson":
            amplitude_idxs = torch.randint(
                task_family_train.atoms //
                (2 if args.skew_task_distribution else 1),
                (args.tasks_per_metaupdate, ),
            )
            phase_idxs = torch.randint(
                task_family_train.atoms //
                (2 if args.skew_task_distribution else 1),
                (args.tasks_per_metaupdate, ),
            )
            task_idxs = amplitude_idxs, phase_idxs
        else:
            task_idxs = None

        target_functions = task_family_train.sample_tasks(
            args.tasks_per_metaupdate, task_idxs=task_idxs)

        for t in range(args.tasks_per_metaupdate):

            # reset network weights
            model_inner.weights = [w.clone() for w in copy_weights]
            model_inner.biases = [b.clone() for b in copy_biases]

            # get data for current task
            train_inputs = task_family_train.sample_inputs(
                args.k_meta_train).to(args.device)

            for _ in range(args.num_inner_updates):

                # make prediction using the current model
                outputs = model_inner(train_inputs)

                # get targets
                targets = target_functions[t](train_inputs)

                # ------------ update on current task ------------

                # compute loss for current task
                loss_task = F.mse_loss(outputs, targets)

                # compute the gradient wrt current model
                params = [w for w in model_inner.weights
                          ] + [b for b in model_inner.biases]
                grads = torch.autograd.grad(loss_task,
                                            params,
                                            create_graph=True,
                                            retain_graph=True)

                # make an update on the inner model using the current model (to build up computation graph)
                for i in range(len(model_inner.weights)):
                    if not args.first_order:
                        model_inner.weights[i] = (model_inner.weights[i] -
                                                  args.lr_inner * grads[i])
                    else:
                        model_inner.weights[i] = (
                            model_inner.weights[i] -
                            args.lr_inner * grads[i].detach())
                for j in range(len(model_inner.biases)):
                    if not args.first_order:
                        model_inner.biases[j] = (
                            model_inner.biases[j] -
                            args.lr_inner * grads[i + j + 1])
                    else:
                        model_inner.biases[j] = (
                            model_inner.biases[j] -
                            args.lr_inner * grads[i + j + 1].detach())

            # ------------ compute meta-gradient on test loss of current task ------------

            # get test data
            test_inputs = task_family_train.sample_inputs(args.k_meta_test).to(
                args.device)

            # get outputs after update
            test_outputs = model_inner(test_inputs)

            # get the correct targets
            test_targets = target_functions[t](test_inputs)

            # compute loss (will backprop through inner loop)
            if args.detector == "minimax":
                importance = task_probs[t]
            else:
                importance = 1.0 / args.tasks_per_metaupdate
            loss_meta_raw = F.mse_loss(test_outputs, test_targets)
            loss_meta = loss_meta_raw * importance
            if args.detector == "neyman-pearson":
                amplitude_idxs, phase_idxs = task_idxs
                aux_loss = constrainer(amplitude_idxs[t], phase_idxs[t],
                                       loss_meta_raw)
                loss_meta = loss_meta + aux_loss

            # compute gradient w.r.t. *outer model*
            outer_params = model_outer.weights + model_outer.biases
            if args.detector == "minimax":
                outer_params += [
                    task_sampler.tau_amplitude, task_sampler.tau_phase
                ]
            elif args.detector == "neyman-pearson":
                outer_params += [
                    constrainer.tau_amplitude, constrainer.tau_phase
                ]

            task_grads = torch.autograd.grad(
                loss_meta,
                outer_params,
                retain_graph=(args.detector != "bayes"))
            for i in range(len(outer_params)):
                meta_gradient[i] += task_grads[i].detach()

        # ------------ meta update ------------

        meta_optimiser.zero_grad()
        # print(meta_gradient)

        # assign meta-gradient
        for i in range(len(model_outer.weights)):
            model_outer.weights[i].grad = meta_gradient[i]
            meta_gradient[i] = 0
        for j in range(len(model_outer.biases)):
            model_outer.biases[j].grad = meta_gradient[i + j + 1]
            meta_gradient[i + j + 1] = 0
        if args.detector == "minimax":
            task_sampler.tau_amplitude.grad = -meta_gradient[i + j + 2]
            task_sampler.tau_phase.grad = -meta_gradient[i + j + 3]
            meta_gradient[i + j + 2] = 0
            meta_gradient[i + j + 3] = 0
        elif args.detector == "neyman-pearson":
            constrainer.tau_amplitude.grad = -meta_gradient[i + j + 2]
            constrainer.tau_phase.grad = -meta_gradient[i + j + 3]
            meta_gradient[i + j + 2] = 0
            meta_gradient[i + j + 3] = 0

        # do update step on outer model
        meta_optimiser.step()

        # ------------ logging ------------

        if i_iter % log_interval == 0:

            # evaluate on training set
            losses = eval(
                args,
                copy.copy(model_outer),
                task_family=task_family_train,
                num_updates=args.num_inner_updates,
            )
            loss_mean, loss_conf = utils.get_stats(np.array(losses))
            logger.train_loss.append(loss_mean)
            logger.train_conf.append(loss_conf)

            # evaluate on valid set
            losses = eval(
                args,
                copy.copy(model_outer),
                task_family=task_family_valid,
                num_updates=args.num_inner_updates,
            )
            loss_mean, loss_conf = utils.get_stats(np.array(losses))
            logger.valid_loss.append(loss_mean)
            logger.valid_conf.append(loss_conf)

            # save best model
            if logger.valid_loss[-1] == np.min(logger.valid_loss):
                print("saving best model at iter", i_iter)
                logger.best_valid_model = copy.copy(model_outer)

            # save logging results
            utils.save_obj(logger, os.path.join(path, "logs"))

            # print current results
            logger.print_info(i_iter, start_time)
            start_time = time.time()

    return logger
Exemple #3
0
def run(args, log_interval=5000, rerun=False):
    global temp
    assert not args.maml
    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    if not os.path.isdir('{}/{}_result_files/'.format(code_root, args.task)):
        os.mkdir('{}/{}_result_files/'.format(code_root, args.task))
    path = '{}/{}_result_files/'.format(
        code_root, args.task) + utils.get_path_from_args(args)

    if os.path.exists(path + '.pkl') and not rerun:
        return utils.load_obj(path)

    start_time = time.time()
    utils.set_seed(args.seed)

    # --- initialise everything ---

    # get the task family
    if args.task == 'sine':
        task_family_train = tasks_sine.RegressionTasksSinusoidal()
        task_family_valid = tasks_sine.RegressionTasksSinusoidal()
        task_family_test = tasks_sine.RegressionTasksSinusoidal()
    elif args.task == 'celeba':
        task_family_train = tasks_celebA.CelebADataset('train',
                                                       device=args.device)
        task_family_valid = tasks_celebA.CelebADataset('valid',
                                                       device=args.device)
        task_family_test = tasks_celebA.CelebADataset('test',
                                                      device=args.device)
    elif args.task == 'multi':
        task_family_train = multi()
        task_family_valid = multi()
        task_family_test = multi()
    else:
        raise NotImplementedError

    # initialise network
    model = CaviaModel(n_in=task_family_train.num_inputs,
                       n_out=task_family_train.num_outputs,
                       num_context_params=args.num_context_params,
                       n_hidden=args.num_hidden_layers,
                       device=args.device).to(args.device)
    # intitialise meta-optimiser
    # (only on shared params - context parameters are *not* registered parameters of the model)
    meta_optimiser = optim.Adam(model.parameters(), args.lr_meta)
    encoder = pool_encoder().to(args.device)
    encoder_optimiser = optim.Adam(encoder.parameters(), lr=1e-3)
    decoder = pool_decoder().to(args.device)
    decoder_optimiser = optim.Adam(decoder.parameters(), lr=1e-3)
    #encoder.load_state_dict(torch.load('./model/encoder'))
    p_encoder = place().to(args.device)
    p_optimiser = optim.Adam(p_encoder.parameters(), lr=1e-3)
    # initialise loggers
    logger = Logger()
    logger.best_valid_model = copy.deepcopy(model)

    # --- main training loop ---

    for i_iter in range(args.n_iter):
        # initialise meta-gradient
        meta_gradient = [0 for _ in range(len(model.state_dict()))]
        place_gradient = [0 for _ in range(len(p_encoder.state_dict()))]
        encoder_gradient = [0 for _ in range(len(encoder.state_dict()))]
        #print(meta_gradient)

        # sample tasks
        target_functions, ty = task_family_train.sample_tasks(
            args.tasks_per_metaupdate, True)

        # --- inner loop ---

        for t in range(args.tasks_per_metaupdate):

            # reset private network weights
            model.reset_context_params()

            # get data for current task
            x = task_family_train.sample_inputs(
                args.k_meta_train, args.use_ordered_pixels).to(args.device)

            y = target_functions[t](x)
            train_inputs = torch.cat([x, y], dim=1)
            a = encoder(train_inputs)
            #embedding,_ = torch.max(a,dim=0)
            embedding = torch.mean(a, dim=0)

            logits = p_encoder(embedding)
            logits = logits.reshape([latent_dim, categorical_dim])

            y = gumbel_softmax(logits, temp, hard=True)
            y = y[:, 1]
            #print(temp)

            #model.set_context_params(embedding)
            #print(model.context_params)

            for _ in range(args.num_inner_updates):
                # forward through model
                train_outputs = model(x)

                # get targets
                train_targets = target_functions[t](x)

                # ------------ update on current task ------------

                # compute loss for current task
                task_loss = F.mse_loss(train_outputs, train_targets)

                # compute gradient wrt context params
                task_gradients = \
                    torch.autograd.grad(task_loss, model.context_params, create_graph=not args.first_order)[0]

                # update context params (this will set up the computation graph correctly)
                model.context_params = model.context_params - args.lr_inner * task_gradients * y

            #print(model.context_params)
            # ------------ compute meta-gradient on test loss of current task ------------

            # get test data
            test_inputs = task_family_train.sample_inputs(
                args.k_meta_test, args.use_ordered_pixels).to(args.device)

            # get outputs after update
            test_outputs = model(test_inputs)

            # get the correct targets
            test_targets = target_functions[t](test_inputs)

            # compute loss after updating context (will backprop through inner loop)
            loss_meta = F.mse_loss(test_outputs, test_targets)
            #print(torch.norm(y,1)/1000)
            #loss_meta += torch.norm(y,1)/700
            qy = F.softmax(logits, dim=-1)
            log_ratio = torch.log(qy * categorical_dim + 1e-20)
            KLD = torch.sum(qy * log_ratio, dim=-1).mean() / 5
            # print(KLD)
            loss_meta += KLD

            # compute gradient + save for current task
            task_grad = torch.autograd.grad(loss_meta,
                                            model.parameters(),
                                            retain_graph=True)

            for i in range(len(task_grad)):
                # clip the gradient
                meta_gradient[i] += task_grad[i].detach().clamp_(-10, 10)

            task_grad_place = torch.autograd.grad(loss_meta,
                                                  p_encoder.parameters(),
                                                  retain_graph=True)

            for i in range(len(task_grad_place)):
                # clip the gradient
                place_gradient[i] += task_grad_place[i].detach().clamp_(
                    -10, 10)

            task_grad_encoder = torch.autograd.grad(loss_meta,
                                                    encoder.parameters())
            for i in range(len(task_grad_encoder)):
                # clip the gradient
                encoder_gradient[i] += task_grad_encoder[i].detach().clamp_(
                    -10, 10)

        # ------------ meta update ------------

        # assign meta-gradient
        for i, param in enumerate(model.parameters()):
            param.grad = meta_gradient[i] / args.tasks_per_metaupdate
        meta_optimiser.step()

        # do update step on shared model
        for i, param in enumerate(p_encoder.parameters()):
            param.grad = place_gradient[i] / args.tasks_per_metaupdate
        p_optimiser.step()

        for i, param in enumerate(encoder.parameters()):
            param.grad = encoder_gradient[i] / args.tasks_per_metaupdate
        encoder_optimiser.step()

        # reset context params
        model.reset_context_params()

        if i_iter % 350 == 1:
            temp = np.maximum(temp * np.exp(-ANNEAL_RATE * i_iter), 0.5)
            print(temp)
        # ------------ logging ------------

        if i_iter % log_interval == 0:

            # evaluate on training set
            loss_mean, loss_conf = eval_cavia(
                args,
                copy.deepcopy(model),
                task_family=task_family_train,
                num_updates=args.num_inner_updates,
                encoder=encoder,
                p_encoder=p_encoder)
            logger.train_loss.append(loss_mean)
            logger.train_conf.append(loss_conf)

            # evaluate on test set
            loss_mean, loss_conf = eval_cavia(
                args,
                copy.deepcopy(model),
                task_family=task_family_valid,
                num_updates=args.num_inner_updates,
                encoder=encoder,
                p_encoder=p_encoder)
            logger.valid_loss.append(loss_mean)
            logger.valid_conf.append(loss_conf)

            # evaluate on validation set

            if i_iter % log_interval == 0:
                loss_mean, loss_conf = eval_cavia(
                    args,
                    copy.deepcopy(model),
                    task_family=task_family_test,
                    num_updates=args.num_inner_updates,
                    encoder=encoder,
                    p_encoder=p_encoder)
                logger.test_loss.append(loss_mean)
                logger.test_conf.append(loss_conf)

            # save logging results
            utils.save_obj(logger, path)

            # save best model
            if logger.valid_loss[-1] == np.min(logger.valid_loss):
                print('saving best model at iter', i_iter)
                logger.best_valid_model = copy.deepcopy(model)
                logger.best_encoder_valid_model = copy.deepcopy(encoder)
                logger.best_place_valid_model = copy.deepcopy(p_encoder)

            if i_iter % (4 * log_interval) == 0:
                print('saving model at iter', i_iter)
                logger.valid_model.append(copy.deepcopy(model))
                logger.encoder_valid_model.append(copy.deepcopy(encoder))
                logger.place_valid_model.append(copy.deepcopy(p_encoder))

            # visualise results
            if args.task == 'celeba':
                task_family_train.visualise(
                    task_family_train, task_family_test,
                    copy.deepcopy(logger.best_valid_model), args, i_iter)

            # print current results
            logger.print_info(i_iter, start_time)
            start_time = time.time()

    return logger
Exemple #4
0
def run(args, log_interval=5000, rerun=False):
    assert args.maml

    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    if not os.path.isdir('{}/{}_result_files/'.format(code_root, args.task)):
        os.mkdir('{}/{}_result_files/'.format(code_root, args.task))
    path = '{}/{}_result_files/'.format(code_root, args.task) + utils.get_path_from_args(args)

    if os.path.exists(path + '.pkl') and not rerun:
        return utils.load_obj(path)

    start_time = time.time()

    # correctly seed everything
    utils.set_seed(args.seed)

    # --- initialise everything ---

    # get the task family
    if args.task == 'sine':
        task_family_train = tasks_sine.RegressionTasksSinusoidal()
        task_family_valid = tasks_sine.RegressionTasksSinusoidal()
        task_family_test = tasks_sine.RegressionTasksSinusoidal()
    elif args.task == 'celeba':
        task_family_train = tasks_celebA.CelebADataset('train', args.device)
        task_family_valid = tasks_celebA.CelebADataset('valid', args.device)
        task_family_test = tasks_celebA.CelebADataset('test', args.device)
    else:
        raise NotImplementedError

    #initialize transformer
    transformer = FCNet(task_family_train.num_inputs, 3, 128, 128).to(args.device)

    # initialise network
    model_inner = MamlModel(128,
                            task_family_train.num_outputs,
                            n_weights=args.num_hidden_layers,
                            num_context_params=args.num_context_params,
                            device=args.device
                            ).to(args.device)
    model_outer = copy.deepcopy(model_inner)
    
    print("MAML: ", model_outer)
    print("Transformer: ", transformer)
    # intitialise meta-optimiser
    meta_optimiser = optim.Adam(model_outer.weights + model_outer.biases + [model_outer.task_context],
                                args.lr_meta)
    opt_transformer = torch.optim.Adam(transformer.parameters(), 0.01)

    # initialise loggers
    logger = Logger()
    logger.best_valid_model = copy.deepcopy(model_outer)

    for i_iter in range(args.n_iter):
        #meta_train_error = 0.0
        # copy weights of network
        copy_weights = [w.clone() for w in model_outer.weights]
        copy_biases = [b.clone() for b in model_outer.biases]
        copy_context = model_outer.task_context.clone()

        # get all shared parameters and initialise cumulative gradient
        meta_gradient = [0 for _ in range(len(copy_weights + copy_biases) + 1)]

        # sample tasks
        target_functions = task_family_train.sample_tasks(args.tasks_per_metaupdate)

        for t in range(args.tasks_per_metaupdate):
            
            #gradient initialization for transformer
            acc_grads = fsn.phi_gradients(transformer, args.device)

            # reset network weights
            model_inner.weights = [w.clone() for w in copy_weights]
            model_inner.biases = [b.clone() for b in copy_biases]
            model_inner.task_context = copy_context.clone()

            # get data for current task
            train_inputs = task_family_train.sample_inputs(args.k_meta_train, args.use_ordered_pixels).to(args.device)

            # get test data
            test_inputs = task_family_train.sample_inputs(args.k_meta_test, args.use_ordered_pixels).to(args.device)

            transformed_train_inputs = transformer(train_inputs)#.to(args.device)
            transformed_test_inputs = transformer(test_inputs)#.to(args.device)

            # transformer task loss
           # with torch.no_grad():
            targets0 = target_functions[t](train_inputs)
            L0 = F.mse_loss(model_inner(transformed_train_inputs), targets0)
            targets1 = target_functions[t](test_inputs)
            L1 = F.mse_loss(model_inner(transformed_test_inputs), targets1)
            trans_loss = fsn.cosine_loss(L0, L1, model_inner, args.device)
                #trans_loss = evaluation_error + trans_loss
           
            for step in range(args.num_inner_updates):
               # print("iteration:" , i_iter, "innerstep: ", step)
                outputs = model_inner(transformed_train_inputs)

                # make prediction using the current model
                #outputs = model_inner(train_inputs)

                # get targets
                targets = target_functions[t](train_inputs)

                # ------------ update on current task ------------

                # compute loss for current task
                loss_task = F.mse_loss(outputs, targets)

                # compute the gradient wrt current model
                params = [w for w in model_inner.weights] + [b for b in model_inner.biases] + [model_inner.task_context]
                grads = torch.autograd.grad(loss_task, params, create_graph=True, retain_graph=True)

                # make an update on the inner model using the current model (to build up computation graph)
                for i in range(len(model_inner.weights)):
                    if not args.first_order:
                        model_inner.weights[i] = model_inner.weights[i] - args.lr_inner * grads[i].clamp_(-10, 10)
                    else:
                        model_inner.weights[i] = model_inner.weights[i] - args.lr_inner * grads[i].detach().clamp_(-10, 10)
                for j in range(len(model_inner.biases)):
                    if not args.first_order:
                        model_inner.biases[j] = model_inner.biases[j] - args.lr_inner * grads[i + j + 1].clamp_(-10, 10)
                    else:
                        model_inner.biases[j] = model_inner.biases[j] - args.lr_inner * grads[i + j + 1].detach().clamp_(-10, 10)
                if not args.first_order:
                    model_inner.task_context = model_inner.task_context - args.lr_inner * grads[i + j + 2].clamp_(-10, 10)
                else:
                    model_inner.task_context = model_inner.task_context - args.lr_inner * grads[i + j + 2].detach().clamp_(-10, 10)

            # ------------ compute meta-gradient on test loss of current task ------------

            # get outputs after update
            test_outputs = model_inner(transformed_test_inputs)

            # get the correct targets
            test_targets = target_functions[t](test_inputs)

            # compute loss (will backprop through inner loop)
            loss_meta = F.mse_loss(test_outputs, test_targets)


            #meta_train_error += loss_meta.item()

            # transformer gradients
            trans_loss = loss_meta
            grads_phi = list(torch.autograd.grad(trans_loss, transformer.parameters(), retain_graph=True, create_graph=True))

            for p, l in zip(acc_grads, grads_phi):
                l = l
                p.data = torch.add(p, (1 / args.tasks_per_metaupdate), l.detach().clamp_(-10,10))


            # compute gradient w.r.t. *outer model*
            task_grads = torch.autograd.grad(loss_meta,
                                             model_outer.weights + model_outer.biases + [model_outer.task_context])
            for i in range(len(model_inner.weights + model_inner.biases) + 1):
                meta_gradient[i] += task_grads[i].detach().clamp_(-10, 10)

        # ------------ meta update ------------

        opt_transformer.zero_grad()
        meta_optimiser.zero_grad()

        # parameter gradient attributes of transformer updated
        for k, p in zip(transformer.parameters(), acc_grads):
            k.grad = p
        # print(meta_gradient)

        # assign meta-gradient
        for i in range(len(model_outer.weights)):
            model_outer.weights[i].grad = meta_gradient[i] / args.tasks_per_metaupdate
            meta_gradient[i] = 0
        for j in range(len(model_outer.biases)):
            model_outer.biases[j].grad = meta_gradient[i + j + 1] / args.tasks_per_metaupdate
            meta_gradient[i + j + 1] = 0
        model_outer.task_context.grad = meta_gradient[i + j + 2] / args.tasks_per_metaupdate
        meta_gradient[i + j + 2] = 0

        # do update step on outer model
	
        meta_optimiser.step()
        opt_transformer.step()
        # ------------ logging ------------

        if i_iter % log_interval == 0:# and i_iter > 0:
            # evaluate on training set
            loss_mean, loss_conf = eval(args, copy.copy(model_outer), task_family=task_family_train,
                                        num_updates=args.num_inner_updates, transformer=transformer)
            logger.train_loss.append(loss_mean)
            logger.train_conf.append(loss_conf)

            # evaluate on test set
            loss_mean, loss_conf = eval(args, copy.copy(model_outer), task_family=task_family_valid,
                                        num_updates=args.num_inner_updates, transformer=transformer)
            logger.valid_loss.append(loss_mean)
            logger.valid_conf.append(loss_conf)

            # evaluate on validation set
            loss_mean, loss_conf = eval(args, copy.copy(model_outer), task_family=task_family_test,
                                        num_updates=args.num_inner_updates, transformer=transformer)
            logger.test_loss.append(loss_mean)
            logger.test_conf.append(loss_conf)

            # save logging results
            utils.save_obj(logger, path)

            # save best model
            if logger.valid_loss[-1] == np.min(logger.valid_loss):
                print('saving best model at iter', i_iter)
                logger.best_valid_model = copy.copy(model_outer)

            # visualise results
            if args.task == 'celeba':
                task_family_train.visualise(task_family_train, task_family_test, copy.copy(logger.best_valid_model),
                                       args, i_iter, transformer)

            # print current results
            logger.print_info(i_iter, start_time)
            start_time = time.time()

    return logger
Exemple #5
0
def run(args, log_interval=5000, rerun=False):
    assert not args.maml

    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    if not os.path.isdir('{}/{}_result_files/'.format(code_root, args.task)):
        os.mkdir('{}/{}_result_files/'.format(code_root, args.task))
    path = '{}/{}_result_files/'.format(
        code_root, args.task) + utils.get_path_from_args(args)

    if os.path.exists(path + '.pkl') and not rerun:
        return utils.load_obj(path)

    start_time = time.time()
    utils.set_seed(args.seed)

    # --- initialise everything ---

    # get the task family
    if args.task == 'sine':
        task_family_train = tasks_sine.RegressionTasksSinusoidal()
        task_family_valid = tasks_sine.RegressionTasksSinusoidal()
        task_family_test = tasks_sine.RegressionTasksSinusoidal()
    elif args.task == 'celeba':
        task_family_train = tasks_celebA.CelebADataset('train',
                                                       device=args.device)
        task_family_valid = tasks_celebA.CelebADataset('valid',
                                                       device=args.device)
        task_family_test = tasks_celebA.CelebADataset('test',
                                                      device=args.device)
    else:
        raise NotImplementedError

    # initialise network
    model = CaviaModel(n_in=task_family_train.num_inputs,
                       n_out=task_family_train.num_outputs,
                       num_context_params=args.num_context_params,
                       n_hidden=args.num_hidden_layers,
                       device=args.device).to(args.device)

    # intitialise meta-optimiser
    # (only on shared params - context parameters are *not* registered parameters of the model)
    meta_optimiser = optim.Adam(model.parameters(), args.lr_meta)

    # initialise loggers
    logger = Logger()
    logger.best_valid_model = copy.deepcopy(model)

    # --- main training loop ---

    for i_iter in range(args.n_iter):

        # initialise meta-gradient
        meta_gradient = [0 for _ in range(len(model.state_dict()))]

        # sample tasks
        target_functions = task_family_train.sample_tasks(
            args.tasks_per_metaupdate)

        # --- inner loop ---

        for t in range(args.tasks_per_metaupdate):

            # reset private network weights
            model.reset_context_params()

            # get data for current task
            train_inputs = task_family_train.sample_inputs(
                args.k_meta_train, args.use_ordered_pixels).to(args.device)

            for _ in range(args.num_inner_updates):
                # forward through model
                train_outputs = model(train_inputs)

                # get targets
                train_targets = target_functions[t](train_inputs)

                # ------------ update on current task ------------

                # compute loss for current task
                task_loss = F.mse_loss(train_outputs, train_targets)

                # compute gradient wrt context params
                task_gradients = \
                    torch.autograd.grad(task_loss, model.context_params, create_graph=not args.first_order)[0]

                # update context params (this will set up the computation graph correctly)
                model.context_params = model.context_params - args.lr_inner * task_gradients

            # ------------ compute meta-gradient on test loss of current task ------------

            # get test data
            test_inputs = task_family_train.sample_inputs(
                args.k_meta_test, args.use_ordered_pixels).to(args.device)

            # get outputs after update
            test_outputs = model(test_inputs)

            # get the correct targets
            test_targets = target_functions[t](test_inputs)

            # compute loss after updating context (will backprop through inner loop)
            loss_meta = F.mse_loss(test_outputs, test_targets)

            # compute gradient + save for current task
            task_grad = torch.autograd.grad(loss_meta, model.parameters())

            for i in range(len(task_grad)):
                # clip the gradient
                meta_gradient[i] += task_grad[i].detach().clamp_(-10, 10)

        # ------------ meta update ------------

        # assign meta-gradient
        for i, param in enumerate(model.parameters()):
            param.grad = meta_gradient[i] / args.tasks_per_metaupdate

        # do update step on shared model
        meta_optimiser.step()

        # reset context params
        model.reset_context_params()

        # ------------ logging ------------

        if i_iter % log_interval == 0:

            # evaluate on training set
            loss_mean, loss_conf = eval_cavia(
                args,
                copy.deepcopy(model),
                task_family=task_family_train,
                num_updates=args.num_inner_updates)
            logger.train_loss.append(loss_mean)
            logger.train_conf.append(loss_conf)

            # evaluate on test set
            loss_mean, loss_conf = eval_cavia(
                args,
                copy.deepcopy(model),
                task_family=task_family_valid,
                num_updates=args.num_inner_updates)
            logger.valid_loss.append(loss_mean)
            logger.valid_conf.append(loss_conf)

            # evaluate on validation set
            loss_mean, loss_conf = eval_cavia(
                args,
                copy.deepcopy(model),
                task_family=task_family_test,
                num_updates=args.num_inner_updates)
            logger.test_loss.append(loss_mean)
            logger.test_conf.append(loss_conf)

            # save logging results
            utils.save_obj(logger, path)

            # save best model
            if logger.valid_loss[-1] == np.min(logger.valid_loss):
                print('saving best model at iter', i_iter)
                logger.best_valid_model = copy.deepcopy(model)

            # visualise results
            if args.task == 'celeba':
                task_family_train.visualise(
                    task_family_train, task_family_test,
                    copy.deepcopy(logger.best_valid_model), args, i_iter)

            # print current results
            logger.print_info(i_iter, start_time)
            start_time = time.time()

    return logger
Exemple #6
0
def run(args, log_interval=5000, rerun=False):
    assert args.maml

    # see if we already ran this experiment
    code_root = os.path.dirname(os.path.realpath(__file__))
    if not os.path.isdir('{}/{}_result_files/'.format(code_root, args.task)):
        os.mkdir('{}/{}_result_files/'.format(code_root, args.task))
    path = '{}/{}_result_files/'.format(
        code_root, args.task) + utils.get_path_from_args(args)

    if os.path.exists(path + '.pkl') and not rerun:
        return utils.load_obj(path)

    start_time = time.time()

    # correctly seed everything
    utils.set_seed(args.seed)

    # --- initialise everything ---

    # get the task family
    if args.task == 'sine':
        task_family_train = tasks_sine.RegressionTasksSinusoidal()
        task_family_valid = tasks_sine.RegressionTasksSinusoidal()
        task_family_test = tasks_sine.RegressionTasksSinusoidal()
    elif args.task == 'celeba':
        task_family_train = tasks_celebA.CelebADataset('train')
        task_family_valid = tasks_celebA.CelebADataset('valid')
        task_family_test = tasks_celebA.CelebADataset('test')
    else:
        raise NotImplementedError

    # initialise network
    model_inner = MamlModel(task_family_train.num_inputs,
                            task_family_train.num_outputs,
                            n_weights=args.num_hidden_layers,
                            num_context_params=args.num_context_params,
                            device=args.device).to(args.device)
    model_outer = copy.deepcopy(model_inner)

    # intitialise meta-optimiser
    meta_optimiser = optim.Adam(
        model_outer.weights + model_outer.biases + [model_outer.task_context],
        args.lr_meta)

    # initialise loggers
    logger = Logger()
    logger.best_valid_model = copy.deepcopy(model_outer)

    for i_iter in range(args.n_iter):

        # copy weights of network
        copy_weights = [w.clone() for w in model_outer.weights]
        copy_biases = [b.clone() for b in model_outer.biases]
        copy_context = model_outer.task_context.clone()

        # get all shared parameters and initialise cumulative gradient
        meta_gradient = [0 for _ in range(len(copy_weights + copy_biases) + 1)]

        # sample tasks
        target_functions = task_family_train.sample_tasks(
            args.tasks_per_metaupdate)

        for t in range(args.tasks_per_metaupdate):

            # reset network weights
            model_inner.weights = [w.clone() for w in copy_weights]
            model_inner.biases = [b.clone() for b in copy_biases]
            model_inner.task_context = copy_context.clone()

            # get data for current task
            train_inputs = task_family_train.sample_inputs(
                args.k_meta_train, args.use_ordered_pixels).to(args.device)

            for _ in range(args.num_inner_updates):

                # forward through network
                outputs = model_outer(train_inputs)

                # get targets
                targets = target_functions[t](train_inputs)

                # ------------ update on current task ------------

                # compute loss for current task
                loss_task = F.mse_loss(outputs, targets)

                # update private parts of network and keep correct computation graph
                params = [w for w in model_outer.weights] + [
                    b for b in model_outer.biases
                ] + [model_outer.task_context]
                grads = torch.autograd.grad(loss_task,
                                            params,
                                            create_graph=True,
                                            retain_graph=True)
                for i in range(len(model_inner.weights)):
                    if not args.first_order:
                        model_inner.weights[i] = model_outer.weights[
                            i] - args.lr_inner * grads[i]
                    else:
                        model_inner.weights[i] = model_outer.weights[
                            i] - args.lr_inner * grads[i].detach()
                for j in range(len(model_inner.biases)):
                    if not args.first_order:
                        model_inner.biases[j] = model_outer.biases[
                            j] - args.lr_inner * grads[i + j + 1]
                    else:
                        model_inner.biases[j] = model_outer.biases[
                            j] - args.lr_inner * grads[i + j + 1].detach()
                if not args.first_order:
                    model_inner.task_context = model_outer.task_context - args.lr_inner * grads[
                        i + j + 2]
                else:
                    model_inner.task_context = model_outer.task_context - args.lr_inner * grads[
                        i + j + 2].detach()

            # ------------ compute meta-gradient on test loss of current task ------------

            # get test data
            test_inputs = task_family_train.sample_inputs(
                args.k_meta_test, args.use_ordered_pixels).to(args.device)

            # get outputs after update
            test_outputs = model_inner(test_inputs)

            # get the correct targets
            test_targets = target_functions[t](test_inputs)

            # compute loss (will backprop through inner loop)
            loss_meta = F.mse_loss(test_outputs, test_targets)

            # compute gradient w.r.t. *outer model*
            task_grads = torch.autograd.grad(
                loss_meta, model_outer.weights + model_outer.biases +
                [model_outer.task_context])
            for i in range(len(model_inner.weights + model_inner.biases) + 1):
                meta_gradient[i] += task_grads[i].detach()

        # ------------ meta update ------------

        meta_optimiser.zero_grad()
        # print(meta_gradient)

        # assign meta-gradient
        for i in range(len(model_outer.weights)):
            model_outer.weights[
                i].grad = meta_gradient[i] / args.tasks_per_metaupdate
            meta_gradient[i] = 0
        for j in range(len(model_outer.biases)):
            model_outer.biases[j].grad = meta_gradient[
                i + j + 1] / args.tasks_per_metaupdate
            meta_gradient[i + j + 1] = 0
        model_outer.task_context.grad = meta_gradient[
            i + j + 2] / args.tasks_per_metaupdate
        meta_gradient[i + j + 2] = 0

        # do update step on outer model
        meta_optimiser.step()

        # ------------ logging ------------

        if i_iter % log_interval == 0:

            # evaluate on training set
            loss_mean, loss_conf = eval(args,
                                        copy.deepcopy(model_outer),
                                        task_family=task_family_train,
                                        num_updates=args.num_inner_updates)
            logger.train_loss.append(loss_mean)
            logger.train_conf.append(loss_conf)

            # evaluate on test set
            loss_mean, loss_conf = eval(args,
                                        copy.deepcopy(model_outer),
                                        task_family=task_family_valid,
                                        num_updates=args.num_inner_updates)
            logger.valid_loss.append(loss_mean)
            logger.valid_conf.append(loss_conf)

            # evaluate on validation set
            loss_mean, loss_conf = eval(args,
                                        copy.deepcopy(model_outer),
                                        task_family=task_family_test,
                                        num_updates=args.num_inner_updates)
            logger.test_loss.append(loss_mean)
            logger.test_conf.append(loss_conf)

            # save logging results
            utils.save_obj(logger, path)

            # save best model
            if logger.valid_loss[-1] == np.min(logger.valid_loss):
                print('saving best model at iter', i_iter)
                logger.best_valid_model = copy.deepcopy(model_outer)

            # visualise results
            if args.task == 'celeba':
                tasks_celebA.visualise(task_family_train, task_family_test,
                                       copy.deepcopy(logger.best_valid_model),
                                       args, i_iter)

            # print current results
            logger.print_info(i_iter, start_time)
            start_time = time.time()

    return logger