from matplotlib import pyplot as plt from tbidbaxlipo.simdata.sim_test import means, stds from tbidbaxlipo.simdata.sim_test.run_script import Job # Create the job instance j = Job() # Run the deterministic simulation (t, det_obs) = j.run_one_cpt() # Plot deterministic results plt.ion() plt.figure() plt.plot(t, det_obs["pores"]) # Plot stochastic results plt.errorbar(means["time"], means["pores"] / j.scaling_factor, yerr=stds["pores"] / j.scaling_factor)
from matplotlib import pyplot as plt from tbidbaxlipo.simdata.sim_test.run_script import Job from tbidbaxlipo.models import simulation # Create the job instance j = Job() # Run the deterministic simulation (t, det_obs) = j.run_one_cpt() # Plot deterministic results plt.ion() plt.figure() plt.plot(t, det_obs['pores'], label='one_cpt') # Run the stochastic simulation xrecs = j.run_n_cpt(cleanup=True) (means, stds) = simulation.calculate_mean_and_std(xrecs) # Plot stochastic results plt.errorbar(means['time'], means['pores'] / j.scaling_factor, yerr=stds['pores'] / j.scaling_factor, label='n_cpt') # Label the plot plt.xlabel('Time (secs)') plt.ylabel('Total pores') plt.title('Comparing one_cpt and n_cpt simulations') plt.legend(loc='lower right')