from telaugesa.cost import mean_square_cost n_epochs = 200 batch_size = 200 nkerns = 64 Xtr, Ytr, Xte, Yte = ds.load_CIFAR10_Processed("../data/CIFAR10/train.npy", "../data/CIFAR10/train.pkl", "../data/CIFAR10/test.npy", "../data/CIFAR10/test.pkl") Xtr = Xtr.reshape(50000, 3, 32, 32).transpose(0, 2, 3, 1).mean(3) Xte = Xte.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).mean(3) Xtrain = Xtr.reshape(Xtr.shape[0], Xtr.shape[1] * Xtr.shape[2]) Xtest = Xte.reshape(Xte.shape[0], Xte.shape[1] * Xte.shape[2]) train_set_x, train_set_y = ds.shared_dataset((Xtrain, Ytr)) test_set_x, test_set_y = ds.shared_dataset((Xtest, Yte)) n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size print "[MESSAGE] The data is loaded" X = T.matrix("data") y = T.ivector("label") idx = T.lscalar() images = X.reshape((batch_size, 1, 32, 32)) layer_0 = ReLUConvLayer(filter_size=(5, 5), num_filters=nkerns, num_channels=1,
from telaugesa.convnet import IdentityConvLayer; from telaugesa.convnet import MaxPoolingSameSize; from telaugesa.model import ConvAutoEncoder; from telaugesa.optimize import gd_updates; from telaugesa.cost import mean_square_cost; from telaugesa.cost import L2_regularization; n_epochs=200; batch_size=200; nkerns=64; Xtr, ytr=ds.load_fer_2013("../data/fer2013/fer2013.csv"); Xtr/=255.0; train_set_x, _=ds.shared_dataset((Xtr, ytr)); n_train_batches=train_set_x.get_value(borrow=True).shape[0]/batch_size; print "[MESSAGE] The data is loaded" X=T.matrix("data"); y=T.ivector("label"); idx=T.lscalar(); images=X.reshape((batch_size, 1, 48, 48)) layer_0=ReLUConvLayer(filter_size=(7, 7), num_filters=nkerns, num_channels=1, fm_size=(48,48), batch_size=batch_size, border_mode="same");
from telaugesa.cost import mean_square_cost; from telaugesa.cost import categorical_cross_entropy_cost; from telaugesa.cost import L2_regularization; n_epochs=50; batch_size=100; nkerns=100; Xtr, Ytr, Xte, Yte=ds.load_CIFAR10("../data/CIFAR10"); Xtr=np.mean(Xtr, 3); Xte=np.mean(Xte, 3); Xtrain=Xtr.reshape(Xtr.shape[0], Xtr.shape[1]*Xtr.shape[2])/255.0; Xtest=Xte.reshape(Xte.shape[0], Xte.shape[1]*Xte.shape[2])/255.0; train_set_x, train_set_y=ds.shared_dataset((Xtrain, Ytr)); test_set_x, test_set_y=ds.shared_dataset((Xtest, Yte)); n_train_batches=train_set_x.get_value(borrow=True).shape[0]/batch_size; n_test_batches=test_set_x.get_value(borrow=True).shape[0]/batch_size; print "[MESSAGE] The data is loaded" ################################## FIRST LAYER ####################################### X=T.matrix("data"); y=T.ivector("label"); idx=T.lscalar(); images=X.reshape((batch_size, 1, 32, 32)) layer_0_en=ReLUConvLayer(filter_size=(7,7),
from telaugesa.convnet import IdentityConvLayer from telaugesa.convnet import MaxPoolingSameSize from telaugesa.model import ConvAutoEncoder from telaugesa.optimize import gd_updates from telaugesa.cost import mean_square_cost from telaugesa.cost import L2_regularization n_epochs = 200 batch_size = 200 nkerns = 64 Xtr, ytr = ds.load_fer_2013("../data/fer2013/fer2013.csv") Xtr /= 255.0 train_set_x, _ = ds.shared_dataset((Xtr, ytr)) n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size print "[MESSAGE] The data is loaded" X = T.matrix("data") y = T.ivector("label") idx = T.lscalar() images = X.reshape((batch_size, 1, 48, 48)) layer_0 = ReLUConvLayer(filter_size=(7, 7), num_filters=nkerns, num_channels=1, fm_size=(48, 48), batch_size=batch_size, border_mode="same")