def feature_extraction_single_rolled(self, img_file): block_size = 16 if not os.path.exists(img_file): return None img = io.imread(img_file) h, w = img.shape mask = get_maps.get_quality_map_intensity(img) #if np.max(mask) == 0: # print img_file #return None start = timeit.default_timer() mnt = self.minu_model.run_whole_image(img, minu_thr=0.2) stop = timeit.default_timer() minu_time = stop - start # show.show_minutiae(img, mnt, mask=mask, block=True, fname=None) # show.show_minutiae(img,mnt) # start = timeit.default_timer() des = descriptor.minutiae_descriptor_extraction( img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=256, patch_size=self.patch_size) # stop = timeit.default_timer() # des_time = stop - start print minu_time #, des_time #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) dir_map, _ = get_maps.get_maps_STFT(img, patch_size=64, block_size=block_size, preprocess=True) #stop = timeit.default_timer() blkH = h // block_size blkW = w // block_size # dir_map = np.zeros((blkH,blkW)) # print stop - start #blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) return rolled_template
def feature_extraction_longitudinal(self, img_file): block_size = 16 img = io.imread(img_file) #print img.shape img = preprocessing.adjust_image_size(img, block_size) h, w = img.shape texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) mask = get_maps.get_quality_map_intensity(img) #show.show_mask(mask, img, fname=None, block=True) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict( texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) enh_constrast_img = filtering.gabor_filtering_pixel( contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=np.ones((h, w), np.int), block_size=16, angle_inc=3) mnt = self.minu_model.run(img, minu_thr=0.2) #show.show_minutiae(img,mnt) des = descriptor.minutiae_descriptor_extraction(img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) return rolled_template, texture_img, enh_constrast_img
def feature_extraction_single_rolled(self, img_file): block_size = 16 img = io.imread(img_file) h, w = img.shape mask = get_maps.get_quality_map_intensity(img) mnt = self.minu_model.run(img, minu_thr=0.2) # show.show_minutiae(img,mnt) des = descriptor.minutiae_descriptor_extraction(img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) start = timeit.default_timer() dir_map, _ = get_maps.get_maps_STFT(img, patch_size=64, block_size=block_size, preprocess=True) stop = timeit.default_timer() print stop - start blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) return rolled_template
def feature_extraction_single_rolled_enhancement(self, img_file): block_size = 16 img = io.imread(img_file) # print img.shape img = preprocessing.adjust_image_size(img, block_size) h, w = img.shape #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) mask = get_maps.get_quality_map_intensity(img) #show.show_mask(mask, img, fname=None, block=True) start = timeit.default_timer() quality_map, dir_map, fre_map = get_maps.get_quality_map_dict( contrast_img_guassian, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) stop = timeit.default_timer() OF_time = stop - start print 'of estimate time: %f' % (OF_time) start = timeit.default_timer() enh_constrast_img = filtering.gabor_filtering_pixel2( contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=mask, gabor_filters=self.gabor_filters) stop = timeit.default_timer() filtering_time = stop - start print 'filtering time: %f' % (filtering_time) mnt = self.minu_model.run_whole_image(img, minu_thr=0.2) # show.show_minutiae(img,mnt) des = descriptor.minutiae_descriptor_extraction(img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) # texture templates stride = 32 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 16): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map[ofY][ofX] # print("ori = " + str(ori)) virtual_minutiae.append([x_i, y_i, ori]) #, distFromBg[y_i,x_i] virtual_minutiae = np.asarray(virtual_minutiae) if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) #show.show_minutiae(img,virtual_minutiae) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=mask) rolled_template.add_texture_template(texture_template) return rolled_template, enh_constrast_img
def feature_extraction_single_latent(raw_img_file, AEC_img_file, mask_file, patch_types=None, des_models=None): ### # input: # raw_img, original latent image # AEC_img, enhanced latent image by Autoencoder # mask: ROI # main idea: # 1) Use AEC_img to estimate ridge flow and ridge spacing # 2) use AEC_image and raw_img to extract two different minutiae set ### raw_img = io.imread(raw_img_file) AEC_img = io.imread(AEC_img_file) mask = io.imread(mask_file) #mask = mask_dilation(mask, block_size=16) texture_img = preprocessing.FastCartoonTexture(raw_img, sigma=2.5, show=False) dir_map, fre_map, rec_img = get_maps.get_maps_STFT(AEC_img, patch_size=64, block_size=16, preprocess=True) descriptor_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) bin_img = binarization.binarization(texture_img, dir_map, block_size=16, mask=mask) enhanced_img = filtering.gabor_filtering_block(bin_img, dir_map + math.pi / 2, fre_map, patch_size=64, block_size=16) enhanced_img = filtering.gabor_filtering_block(enhanced_img, dir_map + math.pi / 2, fre_map, patch_size=64, block_size=16) # plt.subplot(131), plt.imshow(raw_img, cmap='gray') # plt.title('Input image'), plt.xticks([]), plt.yticks([]) # plt.subplot(132), plt.imshow(descriptor_img, cmap='gray') # plt.title('Feature image'), plt.xticks([]), plt.yticks([]) # # plt.subplot(133), plt.imshow(enhanced_img, cmap='gray') # plt.title('Feature image'), plt.xticks([]), plt.yticks([]) # plt.show(block=True) # plt.close() enhanced_AEC_img = filtering.gabor_filtering_block(AEC_img, dir_map + math.pi / 2, fre_map, patch_size=64, block_size=16) bin_img = binarization.binarization(enhanced_AEC_img, dir_map, block_size=16, mask=mask) # plt.imshow(AEC_img,cmap='gray') # plt.show() # plt.close() bin_img2 = 1 - bin_img thin_img = skeletonize(bin_img2) # thin_img2 = thin_img.astype(np.uint8) # thin_img2[thin_img2 > 0] = 255 mnt, thin_img2 = crossnumber.extract_minutiae(1 - thin_img, mask=mask, R=10) crossnumber.show_minutiae(thin_img, mnt) patchSize = 160 oriNum = 64 patchIndexV = descriptor.get_patch_index(patchSize, patchSize, oriNum, isMinu=1) if len(descriptor_img.shape) == 2: h, w = descriptor_img.shape ret = np.empty((h, w, 3), dtype=np.float) ret[:, :, :] = descriptor_img[:, :, np.newaxis] descriptor_img = ret if len(enhanced_AEC_img.shape) == 2: h, w = enhanced_AEC_img.shape ret = np.empty((h, w, 3), dtype=np.float) ret[:, :, :] = enhanced_AEC_img[:, :, np.newaxis] enhanced_AEC_img = ret des = descriptor.minutiae_descriptor_extraction(enhanced_AEC_img, mnt, patch_types, des_models, patchIndexV, batch_size=128) h, w = mask.shape blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) latent_template = template.Template() latent_template.add_minu_template(minu_template) print des
def feature_extraction_single_latent_evaluation(self,img_file, mask_file, AEC_img_file,output_path = None ): img = io.imread(img_file) name = os.path.basename(img_file) AEC_img = io.imread(AEC_img_file) mask = io.imread(mask_file) h,w = mask.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() block = False minu_thr = 0.3 contrast_img = preprocessing.local_constrast_enhancement(img) # Two ways for orientation field estimation # Use the AEC_img and STFT on texture image dir_map_sets = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) dir_map, fre_map = get_maps.get_maps_STFT(texture_img, patch_size=64, block_size=16, preprocess=True) dir_map_sets.append(dir_map) blkH, blkW = dir_map.shape dir_map, fre_map = get_maps.get_maps_STFT(AEC_img, patch_size=64, block_size=16, preprocess=True) dir_map_sets.append(dir_map) #dir_map, fre_map = get_maps.get_maps_STFT(contrast_img, patch_size=64, block_size=16, preprocess=True) #dir_map_sets.append(dir_map) # based on the OF, we can use texture image and AEC image for frequency field estimation fre_map_sets = [] quality_map, fre_map = get_maps.get_quality_map_ori_dict(AEC_img, self.dict, self.spacing, dir_map=dir_map_sets[0], block_size=16) fre_map_sets.append(fre_map) quality_map, fre_map = get_maps.get_quality_map_ori_dict(contrast_img, self.dict, self.spacing, dir_map=dir_map_sets[1], block_size=16) fre_map_sets.append(fre_map) descriptor_imgs = [texture_img] descriptor_imgs.append(contrast_img) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map_sets[0], mask=mask, block_size=16, angle_inc=3) descriptor_imgs.append(enh_texture_img) enh_contrast_img = filtering.gabor_filtering_pixel(contrast_img, dir_map + math.pi / 2, fre_map_sets[1], mask=mask, block_size=16, angle_inc=3) descriptor_imgs.append(enh_contrast_img) minutiae_sets = [] mnt = self.minu_model.run(texture_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img.jpeg' show.show_minutiae(contrast_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_texture_img.jpeg' show.show_minutiae(enh_texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_contrast_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_contrast_img.jpeg' show.show_minutiae(enh_contrast_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(AEC_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, block=block, fname=fname) for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction(des_img, mnt, self.patch_types, self.des_models, self.patchIndexV,batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map_sets[1], mask=mask) latent_template.add_minu_template(minu_template) return latent_template
def feature_extraction_single_latent(self,img_file, output_path = None, show_processes=False ): #block = True img = io.imread(img_file) name = os.path.basename(img_file) mask_CNN,_ = self.ROI_model.run(img) h,w = mask_CNN.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() minu_thr = 0.3 # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) descriptor_imgs.append(texture_img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian(img) quality_map, _, _ = get_maps.get_quality_map_dict(texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) quality_map_pixel = cv2.resize(quality_map, (0, 0), fx=16, fy=16) #plt.imshow(quality_map_pixel,cmap='gray') #plt.show() mask_coarse = quality_map_pixel > 0.3 mask_coarse = mask_coarse.astype(np.int) mask = mask_coarse * mask_CNN # show.show_mask(mask_CNN, img, fname='mask_RCNN.jpeg',block=block) # show.show_mask(mask_coarse,img,fname = 'mask_coarse.jpeg',block=block) # show.show_mask(mask, img, fname='mask.jpeg',block=block) #show.show_mask(mask, AEC_img, fname='mask_AEC.jpeg',block=block) # plt.imshow(AEC_img,cmap = 'gray') # plt.show(block=block) # plt.close() #show.show_mask(mask_CNN, img, fname='mask_RCNN.jpeg',block=block) # AEC_img[mask == 0] = 128 # plt.imshow(AEC_img, cmap='gray') # plt.show(block=block) # plt.close() AEC_img = self.enhancement_model.run(texture_img) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(AEC_img, self.dict_all, self.dict_ori,self.dict_spacing, block_size=16, process=False) blkH, blkW = dir_map.shape if show_processes: show.show_orientation_field(img, dir_map,mask = mask,fname='OF.jpeg') # mnt = self.minu_model.run(contrast_img_mean, minu_thr=0.1) # mnt = self.remove_spurious_minutiae(mnt, mask) # minutiae_sets.append(mnt) # # fname = output_path + os.path.splitext(name)[0] + '_contrast_img_mean.jpeg' # show.show_minutiae(contrast_img_mean, mnt, block=block, fname=fname) enh_contrast_img = filtering.gabor_filtering_pixel(contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) if show_processes: show.show_image(texture_img, mask=mask, block=True, fname='cropped_texture_image.jpeg') show.show_image(AEC_img, mask=mask, block=True, fname='cropped_AEC_image.jpeg') show.show_image(enh_contrast_img, mask=mask, block=True, fname='cropped_enh_image.jpeg') #np.ones((h, w), np.int) descriptor_imgs.append(enh_contrast_img) quality_map2, _ , _ = get_maps.get_quality_map_dict(enh_contrast_img, self.dict_all,self.dict_ori,self.dict_spacing, block_size=16, process=False) quality_map_pixel2 = cv2.resize(quality_map2, (0, 0), fx=16, fy=16) mask2 = quality_map_pixel2 > 0.50 #mask = mask*mask2 minutiae_sets = [] mnt = self.minu_model.run(contrast_img_guassian, minu_thr=0.05) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_texture_img.jpeg' show.show_minutiae(texture_img, mnt, mask=mask,block=block, fname=fname) mnt = self.minu_model.run(AEC_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, mask=mask, block=block, fname=fname) mnt = self.minu_model.run(enh_contrast_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_enh_contrast_img.jpeg' show.show_minutiae(enh_contrast_img, mnt, mask=mask,block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) # minutiae template 1 des = descriptor.minutiae_descriptor_extraction(texture_img, minutiae_sets[0], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[0], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 2 des = descriptor.minutiae_descriptor_extraction(texture_img, minutiae_sets[1], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[1], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 3 des = descriptor.minutiae_descriptor_extraction(enh_texture_img, minutiae_sets[2], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[2], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 4 des = descriptor.minutiae_descriptor_extraction(enh_texture_img, minutiae_sets[3], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[3], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) return latent_template
def feature_extraction_single_latent_evaluation_AEM18T(self,img_file, mask_file, AEC_img_file,output_path = None ): img = io.imread(img_file) name = os.path.basename(img_file) AEC_img = io.imread(AEC_img_file) mask_CNN = io.imread(mask_file) h,w = mask_CNN.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() block = False minu_thr = 0.3 # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) descriptor_imgs.append(texture_img) contrast_img_mean = preprocessing.local_constrast_enhancement(img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian(img) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) quality_map_pixel = cv2.resize(quality_map, (0, 0), fx=16, fy=16) mask_coarse = quality_map_pixel > 0.3 mask_coarse = mask_coarse.astype(np.int) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(AEC_img, self.dict_all, self.dict_ori,self.dict_spacing, block_size=16, process=False) minutiae_sets = [] mnt = self.minu_model.run(texture_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img_mean, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img_mean.jpeg' show.show_minutiae(contrast_img_mean, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img_guassian, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img_guassian.jpeg' show.show_minutiae(contrast_img_guassian, mnt, block=block, fname=fname) #show.show_orientation_field(AEC_img,dir_map) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map, mask=np.ones((h, w), np.int), block_size=16, angle_inc=3) descriptor_imgs.append(enh_texture_img) enh_constrast_img = filtering.gabor_filtering_pixel(contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=np.ones((h,w),np.int), block_size=16, angle_inc=3) descriptor_imgs.append(enh_constrast_img) quality_map2, _ , _ = get_maps.get_quality_map_dict(enh_texture_img, self.dict_all,self.dict_ori,self.dict_spacing, block_size=16, process=False) quality_map_pixel2 = cv2.resize(quality_map2, (0, 0), fx=16, fy=16) mask = quality_map_pixel2 > 0.55 mask = mask.astype(np.int) mask = mask_coarse * mask mask = mask * mask_CNN mnt = self.minu_model.run(AEC_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_texture_img.jpeg' show.show_minutiae(enh_texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_constrast_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_constrast_img.jpeg' show.show_minutiae(enh_constrast_img, mnt, block=block, fname=fname) blkH, blkW = dir_map.shape for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction(des_img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) return latent_template
def feature_extraction_single_latent(self, img_file, output_dir=None, ppi=500, show_processes=False, show_minutiae=False, minu_file=None): block = False block_size = 16 img0 = io.imread(img_file, mode='L') # / 255.0 img = img0.copy() if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) name = os.path.basename(img_file) start = timer() h, w = img.shape if h > 1000 and w > 1000: return None, None # cropping using two dictionary based approach if minu_file is not None: manu_minu = np.loadtxt(minu_file) # # # remove low quality minutiae points input_minu = np.array(manu_minu) input_minu[:, 2] = input_minu[:, 2] / 180.0 * np.pi else: input_minu = [] descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) STFT_texture_img = preprocessing.STFT(texture_img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) STFT_img = preprocessing.STFT(img) constrast_STFT_img = preprocessing.STFT(contrast_img_guassian) # step 1: enhance the latent based on our autoencoder AEC_img = self.enhancement_model.run_whole_image(STFT_texture_img) quality_map_AEC, dir_map_AEC, fre_map_AEC = get_maps.get_quality_map_dict( AEC_img, self.dict_all, self.dict_ori, self.dict_spacing, R=500.0) blkmask_AEC = quality_map_AEC > 0.45 blkmask_AEC = binary_closing(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_AEC = binary_opening(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_SSIM = get_maps.SSIM(STFT_texture_img, AEC_img, thr=0.2) blkmask = blkmask_SSIM * blkmask_AEC blkH, blkW = blkmask.shape mask = cv2.resize(blkmask.astype(float), (block_size * blkW, block_size * blkH), interpolation=cv2.INTER_LINEAR) mask[mask > 0] = 1 minutiae_sets = [] mnt_STFT = self.minu_model[0].run_whole_image(STFT_img, minu_thr=0.05) minutiae_sets.append(mnt_STFT) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_STFT_img.jpeg' show.show_minutiae_sets(STFT_img, [input_minu, mnt_STFT], mask=None, block=block, fname=fname) mnt_STFT = self.minu_model[0].run_whole_image(constrast_STFT_img, minu_thr=0.1) minutiae_sets.append(mnt_STFT) mnt_AEC = self.minu_model[1].run_whole_image(AEC_img, minu_thr=0.25) mnt_AEC = self.remove_spurious_minutiae(mnt_AEC, mask) minutiae_sets.append(mnt_AEC) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae_sets(AEC_img, [input_minu, mnt_AEC], mask=mask, block=block, fname=fname) enh_contrast_img = filtering.gabor_filtering_pixel2( contrast_img_guassian, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_contrast = self.minu_model[1].run_whole_image(enh_contrast_img, minu_thr=0.25) mnt_contrast = self.remove_spurious_minutiae(mnt_contrast, mask) minutiae_sets.append(mnt_contrast) enh_texture_img = filtering.gabor_filtering_pixel2( texture_img, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_texture = self.minu_model[1].run_whole_image(enh_texture_img, minu_thr=0.25) mnt_texture = self.remove_spurious_minutiae(mnt_texture, mask) minutiae_sets.append(mnt_texture) h, w = img.shape latent_template = template.Template() # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] descriptor_imgs.append(STFT_img) descriptor_imgs.append(texture_img) descriptor_imgs.append(enh_texture_img) descriptor_imgs.append(enh_contrast_img) mnt2 = self.get_common_minutiae(minutiae_sets, thr=2) mnt3 = self.get_common_minutiae(minutiae_sets, thr=3) minutiae_sets.append(mnt3) minutiae_sets.append(mnt2) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_common_2.jpeg' show.show_minutiae_sets(img, [input_minu, mnt2], mask=mask, block=block, fname=fname) end = timer() print('Time for minutiae extraction: %f' % (end - start)) start = timer() for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction( des_img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map_AEC, mask=mask) latent_template.add_minu_template(minu_template) end = timer() print('Time for minutiae descriptor generation: %f' % (end - start)) start = timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 16): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map_AEC[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae.append([x_i, y_i, math.pi + ori]) virtual_minutiae = np.asarray(virtual_minutiae) texture_template = [] if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( enh_contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128, patch_size=96) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=None) latent_template.add_texture_template(texture_template) end = timer() print('Time for texture template generation: %f' % (end - start)) return latent_template, texture_template
def feature_extraction_single_rolled(self, img_file, output_dir=None, ppi=500): block_size = 16 if not os.path.exists(img_file): return None img = io.imread(img_file, s_grey=True) if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) if len(img.shape) > 2: img = rgb2gray(img) h, w = img.shape start = timeit.default_timer() mask = get_maps.get_quality_map_intensity(img) stop = timeit.default_timer() print('time for cropping : %f' % (stop - start)) start = timeit.default_timer() contrast_img = preprocessing.local_constrast_enhancement(img) texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) mnt = self.minu_model.run_whole_image(texture_img, minu_thr=0.15) stop = timeit.default_timer() print('time for minutiae : %f' % (stop - start)) start = timeit.default_timer() des = descriptor.minutiae_descriptor_extraction( img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=256, patch_size=self.patch_size) stop = timeit.default_timer() print('time for descriptor : %f' % (stop - start)) dir_map, _ = get_maps.get_maps_STFT(img, patch_size=64, block_size=block_size, preprocess=True) blkH = h // block_size blkW = w // block_size minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) start = timeit.default_timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 24): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae = np.asarray(virtual_minutiae) if len(virtual_minutiae) > 1000: virtual_minutiae = virtual_minutiae[:1000] print len(virtual_minutiae) if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=mask) rolled_template.add_texture_template(texture_template) stop = timeit.default_timer() print('time for texture : %f' % (stop - start)) return rolled_template